Designing Durable Vapor-Deposited Surfaces for Reduced Hydrate Adhesion

TitleDesigning Durable Vapor-Deposited Surfaces for Reduced Hydrate Adhesion
Publication TypeJournal Article
Year of Publication2015
AuthorsSojoudi H., Walsh M.R, Gleason K.K, McKinley G.H
JournalAdvanced Materials Interfaces
Volume2
Issue6
Start Page1500003
Abstract

The formation and accumulation of clathrate hydrates inside oil and gas pipelines cause severe problems in deep-sea oil/gas operations. In the present work, durable and mechanically robust bilayer poly-divinyl benzene/poly(perfluorodecylacrylate) coatings are developed using initiated chemical vapor deposition (iCVD) to reduce the adhesion strength of hydrates to underlying substrates (silicon and steel). Tetrahydrofuran (THF) dissolved in water with a wt% concentration of 0–70 is used to study the formation of hydrates and their adhesion strength. Goniometric measurements of the THF–water droplets on the substrates exhibit a reduction in advancing and receding contact angles with an increase in the THF concentration. The strength of hydrate adhesion experiences a tenfold reduction when substrates are coated with these iCVD polymers: from 1050 ± 250 kPa on bare silicon to 128 ± 100 kPa on coated silicon and from 1130 ± 185 kPa on bare steel to 153 ± 86 kPa on coated steel. The impact of subcooling temperature and time on the adhesion strength of hydrate on substrates is also studied. The results of this work suggest that the THF–water mixture repellency of a given substrate can be utilized to assess its hydrate-phobic behavior; hence, it opens a pathway for studying hydrate-phobicity.

DOI10.1002/admi.201500003

PDF: