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ABSTRACT

In this work, we mathematically derive the conditions for which empirical rheometric relations such as the Cox–Merz rule and Gleissle
mirror relationship are satisfied. We consider the Wagner integral constitutive framework, which is a special limiting case of the
Kaye–Bernstein Kearsley Zapas (K-BKZ) constitutive equation to derive analytical expressions for the complex viscosity, the steady shear
viscosity, and the transient stress coefficient in the start-up of steady shear. We use a fractional Maxwell liquid model as the linear relaxation
modulus or memory kernel within a non-linear integral constitutive framework. This formulation is especially well-suited for describing
complex fluids that exhibit a broad relaxation spectrum and can be readily reduced to the canonical Maxwell model for describing viscoelas-
tic liquids that exhibit a single dominant relaxation time. To incorporate the nonlinearities that always become important in real complex flu-
ids at large strain amplitudes, we consider both an exponential damping function as well as a more general damping function. By evaluating
analytical expressions for small amplitude oscillatory shear, steady shear, and the start-up of steady shear using these different damping func-
tions, we show that neither the Cox–Merz rule nor the Gleissle mirror relation can be satisfied for materials with a single relaxation mode or
narrow relaxation spectrum. We then evaluate the same expressions using asymptotic analysis and direct numerical integration for more rep-
resentative complex fluids having a wide range of relaxation times and nonlinear responses characterized by damping functions of exponen-
tial or Soskey–Winter form. We show that for materials with broad relaxation spectra and sufficiently strong strain-dependent damping the
empirical Cox–Merz rule and the Gleissle mirror relations are satisfied either exactly, or to within a constant numerical factor of order unity.
By contrast, these relationships are not satisfied in other classes of complex viscoelastic materials that exhibit only weak strain-dependent
damping or strain softening.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0084478

I. INTRODUCTION

There are a number of important empirical rules, such as the
Cox–Merz rule1 as well as a second less well-known “forgotten
Cox–Merz rule,”2,3 and the Gleissle mirror relationship,4 that are often
used in linear and non-linear rheology to supplement the available
data. These rules have been applied to a wide variety of polymer

melts,2,5–8 polymer solutions,5,6,9,10 and hydrogels.11 Similar principles
have been used to develop an extended Cox–Merz rule (or
Rutgers–Delaware rule) for suspensions as well as highly filled, yield-
ing, and thixotropic materials.12–14

These different empirical rules involve relationships between var-
ious measurements of the viscous response in a complex fluid such as
the steady shear viscosity, the dynamic viscosity, and the shear stress
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growth coefficient measured following the inception of steady shear
flow. For many rheologists, including the present authors, the first
exposure to these curious empirical relationships is in Chapter 3 of the
pioneering text developed by R. Byron Bird with coauthors and former
graduate students Armstrong and Hassager.15 They note that “the
Cox–Merz rule has proven very useful in predicting gð _cÞ when only
linear viscoelastic data are available” and show data for a linear a poly-
styrene (PS) melt in which the agreement between jg�ðxÞj and gð _cÞ is
“within experimental error” at equivalent values of the shear rate and
angular frequency. This similarity between the complex viscosity and
the steady shear viscosity was first noted by W. P. Cox and E. H. Merz
in their 1958 paper in which they show that experimental measure-
ments of the steady shear viscosity gð _cÞ are a smooth continuation of
the complex viscosity jg�ðxÞj for polystyrene melts.1 More recently,
Snijkers and Vlassopoulos16 have carefully reviewed the levels of agree-
ment (and disagreement) that can be achieved using the Cox–Merz
rule for a range of different complex fluids.

The Cox–Merz rule establishes an approximate equality between
the shear rate-dependent steady shear viscosity gð _cÞ of a complex fluid
and the dynamic viscosity at equivalent values of the shear rate and
angular frequency,1 i.e.,

gð _cÞ ffi jg�ðxÞjj _c¼x: (1)

This equality between a non-linear quantity (such as the steady
shear viscosity) and a linear viscoelastic property (such as the
dynamic viscosity) corresponds to equivalence between two quite
distinct material functions when they are evaluated at equal values
of the Deborah number (De¼xsc) and Weissenberg number
(Wi¼ _csc),

17,18 where sc is some characteristic (or mean) relaxa-
tion time of the complex fluid being studied. When viewed from
the perspective of a Pipkin diagram19,20 (in which the flow
unsteadiness is represented by the magnitude of the Deborah num-
ber along the abscissa and in which a suitable non-linear measure
such as the Weissenberg number reports the strength of the flow
along the ordinate axis), this relationship is especially surprising,
as it represents equivalence between the relevant material func-
tions measured along two completely orthogonal axes!

Several researchers have reported different cases in which consti-
tutive models for complex fluids obey the Cox–Merz rule.2,3,11 In an
early analysis, Booij arrives at a sufficient condition for a viscoelastic
material to follow the Cox–Merz rule that is independent of the linear
relaxation spectrum.2 The condition states that the non-linear strain
measure (denoted S12 in his work) must satisfy

S12 ¼
ð _cu

0
J0ðvÞdv; (2)

where J0 is the zeroth Bessel function and _cu is the accumulated strain
in an elapsed time u. However, he notes that this strain measure oscil-
lates with increasing time and is therefore unphysical; the conditions
required to satisfy the Cox–Merz relationship in real fluids thus neces-
sarily involve details of the viscoelastic relaxation spectrum.

It is shown in advanced textbooks (see, for example, Ref. 21) that
for models characterized by a single relaxation time such as a simple
Maxwell model, when the steady shear viscosity is computed using the
Wagner integral constitutive model [which is a special limiting case of
the time-strain separable (TSS) Kaye–Bernstein Kearsley Zapas (K-BKZ)

constitutive equation]22–27 with an exponential damping function, the
exponent characterizing the rate-dependence of the steady shear viscosity
gð _cÞ is different from the exponent characterizing the frequency depen-
dence of the dynamic viscosity jg�ðxÞj. It is thus evident that one needs
to consider more complex relaxation functions than a single mode
Maxwell model.

In one early study, Larson28 considers materials with a relaxation
modulus of power-law form that follows GðtÞ ’ S t�b. Again, utilizing
the Wagner integral formulation he derives an analytic condition
required to satisfy the Cox–Merz rule for two different forms of the
damping function [an exponential damping function and the
Doi–Edwards (DE) damping function].28 Complex materials exhibiting
a power-law stress relaxation response of this functional form are
known as critical gels.29 However, the majority of real complex fluids
such as polymer solutions and melts are not critical gels and, also, may
not follow the exponential or Doi–Edwards strain damping form. Thus,
it is not straightforward to apply the Cox–Merz criterion developed by
Larson to our understanding of numerous experimental reports in the
literature of materials that closely satisfy the Cox–Merz rule.1,2,5–7,9–11

In an early extensive study on polystyrene solutions and melts,
Yasuda and coworkers10 examine the agreement (and disagreement)
of their data with the Cox-Merz rule. Recently, Snijkers and
Vlassopoulos16 reviewed data for a large variety of different, well-
defined polymers (linear monodisperse and polydisperse polymers,
star polymers, model branched polymers with more than one branch
point, as well as blends of linear polymers of the same chemistry) and
found the Cox–Merz rule to work remarkably well for a large variety
of molecular structures of flexible polymers with only minor devia-
tions at high shear rates.

Using general arguments and a general Maxwell–Wiechert model
(consisting of multiple discrete relaxation time scales), Renardy argues
that for viscoelastic materials with a sufficiently broad relaxation spec-
trum, the Cox–Merz rule will be followed to within a prefactor.30 It is
thus desirable to consider extensions to the analysis of Larson28 to
other related functional forms of the relaxation spectrum and other
types of strain damping function. In the present work, we do this by
using an integral formulation of the fractional Maxwell model and
considering a generalized form of the strain damping function.

The empirical relations proposed by Cox and Merz relate
dynamic measurements of linear viscoelasticity (at low strains) to
steady state measurements of the shear viscosity at large (or infinite)
strains. Bird et al. also describe another “interesting alternative” to the
Cox–Merz rule for predicting the steady shear viscosity from dynamic
linear viscoelastic data, which they refer to as the Gleissle Mirror
Relation crediting observations from Gleissle4 for a high polymer sili-
cone oil. Gleissle4 related the bounding linear viscoelastic envelope of
the shear stress growth coefficient (following inception of steady shear)
to the steady shear viscosity as follows:

lim
_c0! 0

gþðtÞ ffi gð _cÞj _c¼1=t : (3)

Henceforth in this paper, for compactness, we refer to the limiting
curve given by the shear stress growth coefficient during start-up
of steady shear at Wi � 1 [i.e., the left-hand side of Eq. (3)] as the
transient viscosity gþðtÞ � rþðtÞ= _c0. This expression is known as the
mirror relation since a single measurement of the transient start-up
viscosity can be reflected using the mapping _c ¼ 1=t to estimate the
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functional form of the steady shear viscosity over a wide range of shear
rates. When viewed in the framework of a Pipkin diagram,19 this rela-
tionship is just as puzzling as Eq. (1) as it again relates measurements
made as a function of the elapsed time t in the linear viscoelastic
regime (i.e., in the limit sc _c0 � 1) to measurements of the steady
shear viscosity at all shear rates, even well into the non-linear shear-
thinning regime. This relation is discussed by Leblans et al.31 for poly-
mer melts and by Jaishankar for Xanthan gum.11

Although these empirical rules have been shown to be obeyed for
a wide range of complex fluids, there is limited physical understanding
or mathematical derivation of these expressions from general constitu-
tive relationships, such as the K-BKZ model, that interrelate the stress
and strain tensors for a wide range of complex fluids.24,32 In this paper,
we discuss in detail the conditions required for a general complex fluid
to obey the Cox–Merz rule and the Gleissle mirror relationship. To do
this, we use the Wagner integral framework, which is a special limiting
case of the time-strain separable K-BKZ constitutive equation describ-
ing the tensorial stress–strain relationship in a general frame-invariant
way. This constitutive equation has been tested extensively and has
been demonstrated to describe accurately the steady and transient
shear responses of a wide range of complex fluids.11,15,22,23,33

To incorporate the non-linearities that arise at large strain ampli-
tudes within the Wagner integral constitutive equation, we use a gen-
eralized form of the damping function often known as the
Soskey–Winter damping expression.34 This functional form has been
shown to capture the damping or strain-softening of many complex
fluids such as polymer melts, polymers, suspensions, magnetorheolog-
ical fluids as well as polymer blends at large strains.22,23,28,35–39 To
evaluate the Cox–Merz rule and Gleissle mirror relationships embod-
ied in Eqs. (1) and (3), we also need to specify the form of the visco-
elastic relaxation kernel. We first illustrate our approach using the
simple Maxwell model that describes materials such as wormlike
micellar fluids with a single dominant relaxation time scale, and show
analytically using the Wagner integral formulation why such materials
do not obey the Cox–Merz relation. Then, in order to represent more
realistic complex fluids with a broad relaxation spectrum, we use the
fractional Maxwell liquid model (FML) to describe the linear relaxa-
tion kernel. The FML model has been shown to compactly describe
the linear viscoelastic properties of a wide range of complex fluids that
have a finite zero shear viscosity such as polymer melts and polymer
solutions.11,40 In the special limit g0 !1, the FML model can also be
used to describe critical gels and thus reduces to the same relaxation
spectrum considered by Larson.28

In a recent study, we have used this constitutive formulation to
derive analytical expressions for the rate-dependent viscosity in vari-
ous weak and strong damping limits.40 In the present contribution, we
use these analytic results, in conjunction with the linear viscoelastic
response of the fractional Maxwell liquid, to show that complex fluids
undergoing sufficiently strong strain-softening at large strain ampli-
tudes will obey both the Cox–Merz and Gleissle mirror relations to
within a numerical constant. By contrast, other highly elastic materials
(which are characterized by very weak damping responses) will deviate
from both the empirical Cox–Merz and Gliessele mirror rules. Finally,
we illustrate these mathematical expressions using experimental mea-
surements with an 8% alginate solution which is well-described by the
FML/Wagner integral framework and indeed satisfies the Cox–Merz
and mirror relationships very closely.

II. MATHEMATICAL FORMULATION

The Wagner integral model, which is a special limiting case of
the time-strain–separable K-BKZ constitutive equation,41 gives the
relation between the stress and Finger strain tensor as follows:

rðtÞ ¼
ðt
�1

Mðt � t0ÞhðI1; I2Þ C�1ðt; t0Þ � I
� �

dt0; (4)

where Mðt � t0Þ � @Gðt � t0Þ=@t0 is known as the memory function
and G(t) is the linear viscoelastic relaxation modulus. The damping
function h describes the survival probability of elastically active net-
work elements after the application of a sudden large deformation.23,41

Here, I1 and I2 are the first and second invariants of the Finger strain
tensor (C�1) and I is the identity matrix. For shear flows in which
I1¼ I2, we can simplify Eq. (4) to arrive at the following integral
expression for the shear stress rðtÞ at time t:

rðtÞ ¼ �
ðt
�1

Mðt � t0Þ hðcÞ cðt; t0Þ dt0; (5)

where the minus sign is present in front of the integral since we follow
the dynamics of polymeric liquids (DPL)15 definition for the strain
cðt; t0Þ ¼ cðt0Þ � cðtÞ as the accumulated strain between an arbitrary
time t0 in the past and the present time t. The damping function hðcÞ
is given by11,23,33

hðc0Þ ¼
Gðt; c0Þ
GðtÞ ; (6)

where Gðt; c0Þ is the strain-dependent relaxation shear modulus and
G(t) is the linear relaxation modulus (which is independent of strain at
small strain amplitudes).

For a steady shearing flow at constant shear rate _c, the accumu-
lated strain can be written as cðt; t0Þ ¼ _c � ðt0 � tÞ ¼ �_cu. The
steady shear viscosity gð _cÞ for a constant shear rate _c can then
be derived from Eq. (5) and written using the change of variables
u ¼ t � t0 as

rð _cÞ
_c
� gð _cÞ ¼

ð1
0
MðuÞ hð _cuÞ u du: (7)

III. SINGLE MODE RELAXATION MATERIALS

First, we derive the shear rate dependent viscosity for the canoni-
cal case of a simple Maxwell relaxation kernel and an exponential
damping function as proposed by Rolon-Garrido and Wagner.23 In
differential form, the simple Maxwell element can be pictured as a
series arrangement of a single linear (Newtonian) dashpot and a linear
Hookean spring as shown in Fig. 1(a). The corresponding memory
function for a Maxwell element can be written as15

MðtÞ ¼ g0
s2

expð�t=sÞ; (8)

where g0 is the zero shear viscosity and s is the (single) relaxation
time scale captured by the model. Thus, the steady shear rate-
dependent viscosity for a linear Maxwell element combined with
an exponential damping function (which is characterized by a
critical strain c�) and written in the form hðcÞ ¼ exp ð�c=c�Þ
� exp ð�_cu=c�Þ becomes
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gð _cÞ ¼
ð1
0

g0
s2

expð�u=sÞ expð�_cu=c�Þ u du: (9)

This integral expression for the rate-dependent viscosity can be evalu-
ated analytically and simplified to the form

gð _cÞ ¼ g0
1þ _cs=c�ð Þ2

: (10)

The dimensionless product _cs can be identified as theWeissenberg
number, Wi measuring the strength of the non-linear shear flow.17

Thus, Eq. (10) can be written equivalently in dimensionless form as

gð _cÞ
g0
¼ 1

1þWi=c�ð Þ2
: (11)

The magnitude of the complex viscosity jg�ðxÞj in small amplitude
oscillatory shear (SAOS) for the linear Maxwell model is given by15,40

jg�ðxÞj
g0

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðxsÞ2

q : (12)

The product xs corresponds physically to the ratio of two time scales
(s and the period of oscillation T � x�1) and thus defines the
Deborah number (De) for this flow. Therefore, the linear complex vis-
cosity can be written as

jg�ðxÞj
g0

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðDeÞ2

q : (13)

It is clear from Eqs. (11) and (13) that only at low values of both
Wi and De is the Cox–Merz rule exactly satisfied for this single relaxa-
tion mode model. This corresponds to approaching the origin of a
Pipkin diagram19 and gives the expected simple fluid result

lim
_c!0

gð _cÞ ! g0  lim
x!0
jg�ðxÞj:

At larger values of the Weissenberg and Deborah numbers, the steady
shear viscosity and the complex viscosity deviate systematically from
each other. This is illustrated graphically in Fig. 1. At high values of
the imposed oscillatory frequency or shear rate (corresponding to
De 	 1 and Wi 	 1, respectively), the complex viscosity scales as
jg�ðDe	 1Þj � De�1 and the steady shear viscosity scales as
gðWi=c� 	 1Þ �Wi�2.

Next, we consider a more genetalized form of the damping func-
tion also known as the Soskey–Winter damping function34

hðcÞ ¼ 1
1þ c=c�ð Þm ; (14)

where c� again corresponds to the critical strain andm is the damping
exponent. The damping function in the Doi–Edwards constitutive
equation with independent alignment assumption (DE-IAA) can be
approximated by a special case of this general Soskey–Winter damping
form23 with a damping exponent m¼ 2 and a critical strain
c� ¼

ffiffiffiffiffi
15
p

=2.
The critical strain parameter c� is connected physically to the

idea of a maximum in the effective strain imparted to a transient net-
work during a rapid step deformation {i.e., max½hðcÞc
}. Beyond this
critical strain level, the effective strain imparted to the network starts

FIG. 1. (a) The storage modulus (red solid line) and loss modulus (blue solid line)
of the single Maxwell model are represented as functions of the Deborah number
De¼ sx. The complex viscosity jg�ðxÞj=g0 and the steady shear viscosity
gð _cÞ=g0 evaluated for a single Maxwell kernel with exponential damping are illus-
trated in (b). The exponential damping function hðcÞ with c� ¼ 1 is shown in the
inset. The complex viscosity and the steady shear viscosity progressively deviate
as the shear rate increases. (c) The steady shear viscosity for a single mode
Maxwell model with generalized damping function given by Eq. (14) for various
damping parameters. The asymptotic dependence of the steady shear viscosity at
high shear rates for m< 2 is set by the value of damping exponent to be g � _c�m.
However, for m � 2, the asymptotic slope of the steady shear viscosity is always
g � _c�2, independent of the value of the damping exponent.
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decreasing due to strain-softening effects such as chain disentangle-
ment or non-affine deformation. For the exponential damping func-
tion used in Eq. (9), as well as the approximate form of the
Doi–Edwards damping function (m¼ 2) this occurs exactly at c�. For
a general Soskey–Winter damping withm> 1 (but m 6¼ 2), the maxi-
mum effective strain is still controlled by the critical strain parameter,
but is not identically equal to c�. For weaker damping withm � 1, the
effective strain increases without bound irrespective of the critical
strain parameter.

Using this form of the damping function and combining Eqs. (7)
and (14), we obtain

gð _cÞ ¼
ð1
0

g0
s2

exp ð�u=sÞ 1
1þ _cu=c�ð Þm u du: (15)

This expression can readily be evaluated numerically for any
value of the shear rate, but we can also obtain asymptotic expressions
for the rate-dependent viscosity at low and high shear rates, respec-
tively. To do this, we approximate the integral Eq. (15) using the limit-
ing forms of the damping function hðcÞ at small strains (Wi=c� � 1)
and at large strains (Wi=c� 	 1) to obtain

gð _cÞ
g0

ðc�=Wi

0
v exp ð�vÞ dv þ c�

Wi

� �m ð1
c�=Wi

v1�m exp ð�vÞ dv;

(16)

where the argument v ¼ u=s is a dimensionless time. At low shear
rates, this expression is dominated by the first integral40 and approaches
the zero shear-rate viscosity gðWi=c� � 1Þ ¼ g0. Similarly, the asymp-
tote for the rate-dependent viscosity at high shear rates (which is domi-
nated by the second integral) can be found to be40

limWi=c�	1
gð _cÞ
g0
¼ c�

Wi

� �m

Cu 2�m;
c�

Wi

� �
; (17)

where Cuðs; xÞ ¼
Ð1
x ts�1e�tdt is the upper incomplete Gamma func-

tion. From Eq. (17), it can be shown42 that for values of the damping
exponentm< 2, we have gðWi=c� 	 1Þ=g0  Cð2�mÞðWi=c�Þ�m,
and for the damping exponents m � 2, the rate-dependent viscosity
scales as gðWi=c� 	 1Þ=g0 � ðWi=c�Þ�2.

In the linear viscoelastic limit of small strains, strain damping is
unimportant and the complex viscosity is again given by Eq. (13). In the
limit of high frequencies, it thus always scales as jg�ðDe	 1Þj
� De�1 regardless of the form of the damping function. This deviation
between the rate-dependent viscosity and complex viscosity explains
why polymeric materials with very narrow relaxation spectra or single
dominant relaxation modes generally do not satisfy the Cox–Merz rela-
tionship. For completeness, the asymptotic limits of the complex viscos-
ity and steady shear rate-dependent viscosity are tabulated in Table I.43

IV. MATERIALS WITH BROAD RELAXATION SPECTRA
A. Cox–Merz relations for broad relaxation materials

We now extend the above analysis to consider more realistic
complex fluids that are typically characterized by broad relaxation
spectra. We use the fractional Maxwell liquid model (FML) to describe
the linear viscoelastic properties of such materials in a compact way.
The constitutive relation for the evolution of the shear stress in the
FML model can be written in differential form as

rðtÞ þ g0
G

d1�brðtÞ
dt1�b

¼ g0
dcðtÞ
dt

: (18)

It is necessary for the exponent b to satisfy 0 � b � 1 for thermody-
namic consistency,44 and the parameter g0 in Eq. (18) corresponds to
the zero shear viscosity of the fluid.11

It can be shown that this model is also a compact approximation
of the linear viscoelastic response predicted by the Rouse and the
Zimm models when b ¼ 0:5 and b ¼ 0:66, respectively.45,46 The
parameter G in the model is best described as a quasiproperty47 with
units of Pa sb.

The critical gel model studied by Winter and coworkers is also
embodied within this constitutive framework. In the limit of infinite
zero-shear viscosity (g0 !1), the mean relaxation time in the FML
model diverges to infinity sc � ðg0=GÞ1=ð1�bÞ ! 1, and the effec-
tive modulus goes to zero, Ge � ðg�b

0 GÞ1=ð1�bÞ ! 0. After taking this
limit in the differential equation (18) and integration [by a fractional
order of ð1� bÞ], we obtain the familiar limit of a critical gel,29 which
corresponds to a “Scott Blair element,”47 i.e., a single spring–pot ele-
ment with power-law exponent b and a gel strength S that is related to
the quasi-property G by S ¼ G=Cð1� bÞ.

Considering a step strain response, we can calculate the relaxa-
tion modulus of the FML model from Eq. (18) as48

rðtÞ
c0
� GðtÞ ¼ G t�b E1�b;1�b �

G

g0
t1�b

� �
; (19)

where Ea;bðxÞ is the Mittag–Leffler function.49 The characteristic
time scale for the three-parameter FML model is given by:
sc¼ ðg0=GÞ1=ð1�bÞ and this allows the argument of the Mittag–Leffler
function to be compactly written in terms of a dimensionless time
t=sc. From here, the memory function can be found from the expres-
sionMðtÞ � �@GðtÞ=@t. Thus,

MðtÞ ¼ �g0 t=scð Þ1�bE1�b;�b � t=scð Þ1�b
� �

; (20)

where the negative sign appears from the differentiation (in time) of
the (monotonically decreasing) relaxation modulus.

TABLE I. The asymptotes of the complex viscosity and the steady shear rate-
dependent viscosity for a single mode Maxwell memory kernel [Eq. (8)] and various
forms of the damping function. It is clear from this table that at high Deborah num-
bers (sx 	 1) and high Weissenberg numbers (s_c 	 1), the Cox–Merz relation
is, in general, not satisfied.

hðcÞ jg�ðxÞj=g0 gð _cÞ=g0
De;Wi=c* � 1 exp ð�c=c�Þ ¼1 ¼1

1
1þ ðc=c�Þm m< 2

¼ 1 ¼ 1

1
1þ ðc=c�Þm m � 2

¼ 1 ¼ 1

De;Wi=c* 	 1 exp ð�c=c�Þ �De�1 � Wi
c�

� ��2

1
1þ ðc=c�Þm m< 2 �De�1 � Wi

c�

� ��m

1
1þ ðc=c�Þm m � 2 �De�1 � Wi

c�

� ��2
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The fractional differential operator in Eq. (18) is nonlocal in time
and captures a broadly distributed response to an imposed deformation.
The viscoelastic response described by a fractional differential constitu-
tive equation can also be equivalently represented in terms of a continu-
ous relaxation spectrum, HðsÞ, which quantifies the contribution of
different relaxation time scales s to the viscoelastic memory exhibited by
a hereditary material.50,51 To see this, we note that the relaxation modu-
lus can be written in terms of the relaxation spectrum as15

GðtÞ ¼
ð1
�1

exp ð�t=sÞHðsÞ d ln s: (21)

Combining this result and the relaxation modulus given in Eq. (19), a
Stieltjes transform52 can be used to obtain

H0ðsÞ
g0=sc

¼ 1
p

s=scð Þ�1 sinðpbÞ
s=scð Þb�1 þ s=scð Þ1�b � 2 cosðpbÞ

: (22)

This is a special limit of the more general result that can be derived for
the full fractional Maxwell model53,54 when a¼ 1. The evolution in
the shape of the relaxation spectrum for the FML model for different
values of b is shown in Fig. 2 and illustrates the compactness of using
a fractional model to describe broad relaxation spectra. The relaxation
spectra shown in Fig. 2 for the values of b ¼ 0:5 and b ¼ 0:66 closely
approximate the Rouse and Zimm relaxation spectra, respectively.45

As the value of b approaches zero, the relaxation spectrum becomes
narrower and eventually approaches a singular (delta) function for
b¼ 0 which corresponds to the simple Maxwell model limit described
in Sec. III.

The dynamic modulus G�ðxÞ of the FML model can be obtained
by taking a Fourier transform of the linear differential equation in
time represented by Eq. (18) and is given by

G�ðxÞ ¼ GðixÞb � g0ðixÞ
GðixÞb þ g0ðixÞ

: (23)

The real and imaginary parts of the complex modulus can be found
from Eq. (23) and hence the expressions for the storage and loss mod-
ulus of the FML model can be written as follows:

G0ðxÞ
Gc
¼ ðxscÞ cos ðp=2Þ þ ðxscÞ2�b cos ðpb=2Þ

1þ ðxscÞ1�b cos pð1� bÞ=2ð Þ þ ðxscÞ2ð1�bÞ ; (24)

G00ðxÞ
Gc

¼ ðxscÞ sin ðp=2Þ þ ðxscÞ2�b sin ðpb=2Þ
1þ ðxscÞ1�b cos pð1� bÞ=2ð Þ þ ðxscÞ2ð1�bÞ ; (25)

where Gc ¼ g0s
�1
c ¼ Gs�b

c is the characteristic elastic modulus of the
FML model, and the Deborah number can again be identified as
De¼ scx.

The magnitude of the complex viscosity, defined as jg�ðxÞj
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G0ðxÞ2 þ G00ðxÞ2

q
=x, can then be evaluated from Eqs. (24) and

(25) and expressed in compact dimensionless form as

jg�ðxÞj
g0

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ðDeÞ1�b cos pð1� bÞ=2ð Þ þ ðDeÞ2�2b

q : (26)

The low and high Deborah number asymptotes for the complex vis-
cosity can be calculated from Eq. (26) to be

lim
De�1

jg�ðxÞj
g0

¼ 1 (27)

and

lim
De	1

jg�ðxÞj
g0

¼ De�ð1�bÞ: (28)

In all of the above expressions, the simple linear Maxwell model
corresponding to a single spring and dashpot can be retrieved by
substituting b¼ 0 in Eqs. (18)–(27). This would lead us to a single
dominant relaxation time scale as illustrated in Fig. 2 characterized by
a single dominating microstructural length scale. As shown in Sec. III,
this would lead to failure of the Cox–Merz rule and Gleissle mirror
relation irrespective of the damping function.

The rate-dependent viscosity defined in Eq. (7) evaluated with a
linear FML kernel specified by Eq. (20) can then be written quite gen-
erally as

gð _cÞ
g0
¼ �sb�1

c

ð1
0
u�bE1�b;�b � u=scð Þ1�b

� �
hð _cuÞ du: (29)

In our earlier work,40 we derived an approximate analytical expression
for the above integral using the exponential damping function
hðcÞ ¼ exp ð�c=c�Þ, which can be written in terms of a two-part
summation as follows:

gð _cÞ
g0
¼h 1�Wi

c�

� �X1
k¼1
ð�1Þkþ1 bþ kð1� bÞð Þ Wi

c�

� �ðk�1Þð1�bÞ

þh
Wi
c�
� 1

� �
Wi
c�

� �b�1X1
k¼1
ð�1Þkþ1 1� kð1� bÞð Þ

� Wi
c�

� ��ðk�1Þð1�bÞ
; (30)

where h is the Heaviside step function. In Ref. 40, we denoted expo-
nential damping as a strong damping function since the exponent
describing the rate-dependence of the viscosity at high shear rates is

FIG. 2. Evolution of the continuous relaxation spectrum HðsÞ corresponding to the
fractional Maxwell liquid (FML) as the exponent b is changed, while the viscosity g0
and characteristic time constant sc are held constant. In the limit b! 0, the relaxa-
tion spectrum approaches a delta function response corresponding to a single
mode Maxwell model.
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set by the FML linear kernel parameter [i.e., g � _c�ð1�bÞ] and not by
the parameters of the damping function itself.

The lowWeissenberg number asymptote for the steady shear vis-
cosity can be obtained from the first term in Eq. (30) above and
reduces to

lim
Wi=c��1

gð _cÞ
g0
¼ 1; (31)

whereas the high Wi asymptote is given by

lim
Wi=c�	1

gð _cÞ
g0
¼ b

Wi
c�

� �b�1
: (32)

By comparing Eqs. (27) and (31), it is easy to note that the steady and
complex viscosity converge to the same value, corresponding to the
zero shear rate viscosity g0 at low Wi or De, as expected for a “simple
fluid.”55 By comparing Eqs. (28) and (32), we observe that the power-
law exponents describing the dependence on De and Wi are also equal
and therefore the Cox–Merz relation is always satisfied (to within a
constant numerical prefactor) for the integral constitutive equation
given by Eq. (5) with an FML kernel and an exponential strain-
dependent function.

We can also arrive at a condition to identically satisfy the
Cox–Merz relation, i.e., gð _cÞ ¼ jg�ðxÞÞj at highWi or De by equating
Eqs. (28) and (32). We thus obtain the constraint

c� ¼ b
1

b�1: (33)

This expression provides a relationship between the critical strain
parameter c� and the FML exponent b needed to identically satisfy the
Cox–Merz relation. If we consider the Rouse model in which the high
frequency linear viscoelastic response is set by G0 � x0:5, then we find

c�ðRÞ ¼ ð0:5Þ
1=ð0:5�1Þ ¼ 4. Similarly, if we consider the Zimm model

with b ¼ 0:66 we obtain c�ðZÞ ¼ ð0:66Þ
1=ð0:66�1Þ ¼ 3:4. It is typical for

entangled polymer solutions and melts to have c� ¼ 1 � c� � 4
(Ref. 15) (see also the Appendix). It is apparent that the Cox–Merz
relationship will therefore always be very closely approximated [espe-
cially given the form of Eq. (33) and the fact that we graphically repre-
sent viscometric measurements on double logarithmic axes].

We can also consider the rate-dependent viscosity for the more
general damping function of hðcÞ ¼ ½1þ ðc=c�Þm
�1 by evaluating
Eq. (29) and then obtain40

gð _cÞ
g0
¼h 1�Wi=c�ð Þ

�
X1
k¼1
ð�1Þkþ1 pp

mCð1�pÞsin p
ð1�pÞ
m

� � Wi
c�

� �ðk�1Þð1�bÞ
2
64

3
75

þh Wi=c��1ð Þ Wi
c�

� �b�1

�
X1
k¼1
ð�1Þkþ1 qp

mCð1�qÞsin p
ð1�qÞ
m

� � Wi
c�

� ��ðk�1Þð1�bÞ
2
64

3
75;

(34)

where p ¼ bþ kð1� bÞ; q ¼ 1� kð1� bÞ. The asymptotes of this
expression are dominated by the k¼ 1 terms. The low Weissenberg
number asymptote can be calculated from the first term in Eq. (34) to
once again be

lim
Wi=c��1

gð _cÞ
g0
¼ 1: (35)

However, care must be taken in evaluating the viscosity at high
Weissenberg numbers as we have shown40 that the high Wi limit of
Eq. (34) is valid only when m > 1� b. The two different limiting
cases are shown in Figs. 3(a) and 3(b), respectively.

FIG. 3. Comparison of the complex viscosity and the rate-dependent viscosity for a
damping function of Soskey–Winter form in the limit of (a) strong damping func-
tional forms (m > 1� b) and (b) weak damping. For strong damping functions, the
Cox–Merz relation is satisfied to within a constant multiplicative factor. However,
the Cox–Merz relation fails for weak strain-dependent functional forms
m � ð1� bÞ. Here, the model values in panel (a) are b ¼ 0:5; c� ¼ 1, and
m¼ 2 and the model values in panel (b) are b ¼ 0:5; c� ¼ 1, and m¼ 0.3.
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Provided that we satisfy the constraint m > 1� b, the asymp-
totic expression for the rate-dependent viscosity given by Eq. (34) is

lim
Wi=c�	1

gð _cÞ
g0
¼ pb

mCð1� bÞ sin pð1� bÞ
m

	 
 Wi
c�

� �b�1
: (36)

The exponent of the rate-dependent viscosity at high Wi is thus
gð _cÞ � _c�ð1�bÞ. In Ref. 40, we derived a uniformly valid expression
for the steady shear viscosity for the case m > 1� b that accurately
approximates the rate-dependent viscosity for all Wi and that can be
compactly written in the form

g
g0
¼ 1

1þ ð1=BÞ Wi=c�ð Þð1�bÞ ; (37)

where the constant B is given by

B ¼ pb

mCð1� bÞ sin p
1� b
m

� �	 
 : (38)

This general functional form is similar to several common empirical
expressions, such as the Carreau–Yasuda model and Cross
model,10,15,56,57 which are used in the rheology literature for fitting
experimentally measured flow curves of gð _cÞ.

However, for the case m � 1� b, Eq. (34) is invalid and in our
previous paper40 we have derived an alternative expression for the
rate-dependent viscosity in the highWi limit:

lim
Wi=c�	1

gð _cÞ
g0
¼ f ðmÞ Wi

c�

� ��m
; (39)

where

f ðmÞ ¼
ð1
0
�x�b�mE1�b;�b �x1�bð Þdx: (40)

For the case m � 1� b, the exponent describing the rate-dependence
of the viscosity is therefore gð _cÞ � _c�m as shown in Fig. 3(b). We refer
to damping functional forms in which the slope of the rate-dependent
viscosity at high Wi is set by the linear viscoelastic parameter (1� b)
as the strong damping limit. For the general Soskey–Winter functional
form of Eq. (14), the strong damping condition is therefore
m > 1� b. Cases in which the high Wi slope is set by the damping
parameter m itself correspond to weak damping and in the
Soskey–Winter framework correspond to m � ð1� b). As we noted
above, the damping function in the Doi–Edwards constitutive equa-
tion with the independent alignment assumption (DE-IAA) is of the
form given by Eq. (14) with a damping exponent m¼ 2 and a critical
strain c� ¼

ffiffiffiffiffi
15
p

=2 ¼ 1:94.23 Since the damping exponent m¼ 2 is
always greater than the linear FML parameter 1� b (for 0 � b < 1),
the damping function from the DEmodel with independent alignment
is thus always of strong damping character.

By comparing Eq. (27) with Eq. (35), we notice that for viscoelas-
tic liquids the Cox–Merz relation is always satisfied at low shear rates
and frequencies, or more formally, as the dimensionless values of
Wi=c� and De approach zero. By comparing Eq. (28) with Eqs. (36)

and (39), we notice that the Cox–Merz rule is satisfied to within a mul-
tiplicative constant factor for strong damping functions, but will not
hold at high shear rates or frequencies for functional forms corre-
sponding to weak damping. Again for completeness, the asymptotes
for the complex and rate-dependent viscosity for the different damp-
ing functional forms are tabulated in Table II.

For the general Soskey–Winter damping expression, we can also
determine when the Cox–Merz relationship is identically satisfied by
equating the asymptotic expression for the rate-dependent viscosity at
high Weissenberg numbers with the frequency-dependent complex
viscosity at high Deborah numbers. Setting Eqs. (28) and (36) to be
equal, we obtain the dimensionless constraint

pbðc�Þ1�b

mCð1� bÞ sin pð1� bÞ
m

	 
 ¼ 1: (41)

This constraint represents a condition interrelating three of the consti-
tutive parameters of a fractional Maxwell/Wagner liquid: the critical
strain c�, the damping exponentm, and the linear exponent b (charac-
terizing the short time power-law decay of the relaxation modulus and
the power-law dependence of the complex modulus at high
frequencies).

Numerical calculations show that even when Eq. (41) is satisfied,
there can still be some deviation from the Cox–Merz relation when
Wi�1 and De� 1. To illustrate this, we highlight in Fig. 4(a) the devi-
ations between the complex viscosity and the steady shear viscosity.
This is reported in terms of the logarithm of the ratio jg�ðxÞj=gð _cÞ
[i.e., we plot contours of log ðjg�ðxÞj=gð _cÞÞ] for a range of different
damping exponentsm and for equal values of De and Wi. Exact corre-
spondence with the Cox–Merz rule corresponds to a contour value of

TABLE II. Asymptotes of the complex viscosity and steady shear rate-dependent vis-
cosity for the fractional Maxwell liquid kernel for various damping functions. It is clear
from this table that when De¼Wi, the Cox–Merz relation is not satisfied for weak
damping functions m < ð1� bÞ but is satisfied to within a numerical constant for
strong damping functions corresponding to the exponential form or the
Soskey–Winter form with m � ð1� bÞ.

hðcÞ jg�ðxÞj=g0 gð _cÞ=g0
De;Wi=c* � 1 exp ð�c=c�Þ ¼ 1 ¼ 1

1
1þ ðc=c�Þm
m > ð1� bÞ

¼ 1 ¼ 1

1
1þ ðc=c�Þm
m � ð1� bÞ

¼ 1 ¼ 1

De;Wi=c* 	 1 exp ð�c=c�Þ �De�ð1�bÞ � Wi
c�

� ��ð1�bÞ

1
1þ ðc=c�Þm
m � ð1� bÞ

�De�ð1�bÞ � Wi
c�

� ��ð1�bÞ

1
1þ ðc=c�Þm
m � ð1� bÞ

�De�ð1�bÞ � Wi
c�

� ��m
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logð1Þ ¼ 0 and yellow-colored regions of the contour plot. At low
deformation rates, the error is very small for all values of m. By con-
trast, at high De and Wi the errors are only small in the strong damp-
ing limit above the solid black line. The error is minimal and
approaches zero for all deformation rates when m is in the vicinity of
the value given by Eq. (41) as shown by the broken gray line. When
the ratio jg�ðxÞj=gð _cÞ is greater than unity, the logarithm is positive
and the complex viscosity is therefore greater than the steady shear vis-
cosity. At high Wi or De, we can observe this in Fig. 4(a) for values of
m � 1, and this corresponds to most experimental observations.16

However, it is also possible for the ratio to be smaller than unity and
the logarithm of the ratio is then negative at high Wi as is visible in
Fig. 4(a) for smaller values of the damping exponent 0:8 � m � 1.
This case has also been observed in the literature for highly branched
polymer systems.16 In Fig. 4(b), we show a comparison between the
complex viscosity and the steady shear viscosity when the damping

exponentm, the FML parameter b, and the critical strain c� are exactly
interrelated by the constraint of Eq. (41). The deviation observed at
De ’Wi ’ 1 is only of maximum magnitude 0.17 (corresponding to
a ratio of viscosities of approximately 1.5). This close agreement of the
Cox–Merz relationship at high and low De or Wi (but with small devi-
ations at intermediate shear rates) is consistent with measurements for
worm-like micelles and the non-linear differential viscoelastic model
proposed by Manero and coworkers.58

A similar error contour plot showing log ðjg�ðxÞj=gð _cÞÞ is illus-
trated for the exponential damping function with various values of the
FML parameter b and at equal values of Deborah and Weissenberg
numbers in Fig. 4(c). At high Wi or De, once again the ratio of the
dynamic viscosity to the steady shear viscosity may be bigger or
smaller than unity. From Fig. 4(c), we observe the steady shear viscos-
ity to be less than the dynamic viscosity for smaller values of b and
vice versa at larger values of b at high Wi or De. For values of b � 0:5,

FIG. 4. (a) Contour plot of the difference between the logarithm of complex and steady shear viscosity [i.e., log ðjjg�ðxÞj=gð _cÞÞ] to illustrate the deviation from the Cox–Merz
relation for the FML model with a generalized damping function of Soskey–Winter form [Eq. (14)] for various damping exponents m and De or Wi using an FML parameter of
b ¼ 0:3 and a critical strain c� ¼ 1. The black solid line serves as the demarcation between the regions of weak and strong damping functions. The Cox–Merz relationship is
never satisfied for weak damping forms at high Wi resulting in potentially large errors. The gray dashed line represents the result in Eq. (41) when the error is minimum and
approaches zero at both low and high Wi. (b) Comparison between the complex and steady shear viscosity when Eq. (41) is followed, showing close agreement with the
Cox–Merz relationship. (c) Error contour plot showing the difference log ðjg�ðxÞj=gð _cÞÞ for the FML linear relaxation modulus with an exponential damping
hðcÞ ¼ exp ð�c=c�Þ for a critical strain c� ¼ 4. The gray dashed line represents Eq. (33) when the error approaches zero across the full range of deformation rates. (d) The
complex viscosity and steady shear viscosity computed using an exponential damping function overlap on top of each other when Wi¼De, showing perfect agreement with
the Cox–Merz rule when Eq. (33) is obeyed.
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the difference between the two material functions is very small and is
minimized when the critical strain c� follows Eq. (33). A direct
comparison of the complex viscosity and the steady shear viscosity
when a complex liquid exhibits exponential damping with the critical
strain c� and the FML parameter b interrelated by Eq. (33) is shown
in Fig. 4(d). It is clear that the Cox–Merz rule is satisfied almost exactly
at all deformation rates.

B. Representative experimental example

To help illustrate the broad applicability of this analysis and the
Wagner model with a fractional Maxwell kernel, we consider experi-
mental data obtained with an 8% alginate solution in Fig. 5. This semi-
flexible biopolymer can be used to produce biocompatible gel-like
materials and the rheology can be varied systematically by changing
the alginate concentration and the concentration of divalent cross-
links.59,60 In order to evaluate the strain-dependent damping function

hðcÞ for this fluid, we first measure the strain-dependent relaxation
modulus Gðt; c0Þ as shown in Fig. 5(a) for step strains in the range of
0:3 � c0 � 10. A broad power-law decay in the relaxation modulus
with time is observed for all imposed strain amplitudes. At small
strains (c0 � 0:7), the measured relaxation curves superpose—
indicating the linear viscoelastic limit. At higher applied strain
amplitudes, the measurements of the relaxation modulus are sys-
tematically lower. We then shift the strain-dependent relaxation
modulus on to the linear relaxation modulus [here taken to be
Gðt; c0 ¼ 0:3Þ] to determine the damping values hðcÞ ¼ Gðt; c0Þ=
GðtÞ. The collapsed master curve of the relaxation modulus and
the corresponding values of the damping function are plotted in
Fig. 5(b). The generalized damping function given by Eq. (14) is
regressed to the damping values and the resulting best fit parame-
ters (shown by the solid line) are found to correspond to a critical
strain c� ¼ 2:5 and a damping exponent m¼ 1.4 (which is signifi-
cantly smaller than the Doi–Edwards limit, mDE ¼ 2). The storage

FIG. 5. (a) Strain-dependent relaxation modulus for 8% alginate solution for strains up to 1000% ðc0 ¼ 10Þ. (b) Superposition of the strain-dependent relaxation modulus to
the linear viscoelastic relaxation modulus ðc0 � 0:7Þ. The solid line indicates the FML fit using the parameters G ¼ 23 Pa sb; b ¼ 0:56, and g0 ¼ 7:0 Pa s. The damping
values are shown in the inset and a damping function of the form of Eq. (14) is used to fit the damping values with parameter values c� ¼ 2:5 and m¼ 1.4. (c) Measurements
of the storage modulus (filled) and loss modulus (hollow) at a strain amplitude c0 ¼ 0:02 are shown and the corresponding FML fit is shown using the same parameter values
(G ¼ 23 Pa sb; b ¼ 0:56, and g0 ¼ 7:0 Pa s) by the solid lines. (d) Experimental measurements of the steady shear viscosity and magnitude of the complex viscosity evalu-
ated are shown by the data points. The solid lines represent the model predictions from Eq. (26) for the complex viscosity and from Eq. (29) for the steady shear viscosity using
the Wagner integral framework with the linear FML kernel and generalized damping function plus the same parameter values given above. The small deviation between the
steady shear prediction and the measured data at high shear rates ( _c � 20 s�1) is probably due to experimental artifacts such as partial wall slip or the onset of viscous heat-
ing that can become important at high deformation rates.
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and loss modulus are obtained by performing SAOS tests for a
range of frequencies at a strain amplitude c0 ¼ 0:02 and are shown
in Fig. 5(c). The linear viscoelastic properties of this alginate solu-
tion are very well described by the three-parameter fractional
Maxwell liquid model as shown in Figs. 5(b) and 5(c), respectively.
By regressing the data to Eq. (19), (24), and (25), the best-fit FML
parameters are evaluated to be G ¼ 23 Pa sb; b ¼ 0:56, and
g0 ¼ 7:0 Pa s. The characteristic relaxation time is thus
sc¼ ð7=23Þ1=ð1�0:56Þ ¼ 0:067 s and this value can be detected visu-
ally by the change in the slope of the storage and loss modulus
curves at frequencies around xc ¼ 1=sc ’ 15 rad/s.

The material properties for this alginate solution thus correspond
to the strong damping limit with m > ð1� bÞ and we should expect
the Cox–Merz relationship to be valid. The resulting predictions for
the complex viscosity jg�ðxÞj and the steady shear viscosity gð _cÞ are
illustrated in Fig. 5(d). The FML predictions from Eq. (26) and the
prediction for the steady shear viscosity computed from Eq. (29) (with
no adjustable parameters) are also compared with the experimental
data in Fig. 5(d). The agreement between the measured steady shear
data and the Cox–Merz predictions is excellent. The consistency
between the experimental data and our chosen time-strain separable
(TSS) integral K-BKZ formulation provides validation to the fractional
constitutive framework through which we have derived the conditions
for the Cox–Merz rule to be satisfied.

C. The Gleissle mirror relationship

The Gleissle mirror relation relates the time-dependent growth of
the transient viscosity at a very low and constant shear rate (i.e., in the
linear viscoelastic limit _c0sc � 1) to the rate-dependent steady shear
viscosity4,61 and can be written in the form

gþðt; _c0 ! 0Þ ¼ gð _c ¼ 1=tÞ: (42)

Using the results above, we can determine the conditions required for
the Wagner integral constitutive equation with the FML kernel and a
generalized damping function to satisfy this empirical relationship. In
order for the Gleissle mirror relation to hold true exactly, we find that
the following implicit condition must be satisfied between the two
parameters characterizing the general damping function (c� and m)
and the parameter b in the FML relaxation kernel:

pbðc�Þ1�b

mCð1� bÞ sin pð1� bÞ
m

	 
 ¼ b
Cð2� bÞ : (43)

Derivation of Eq. (43): The transient viscosity at very low shear rates (in
the linear viscoelastic limit) can be found from the integral expression

gþðtÞ � lim
_c0sc�1

gþðt; _c0Þ ¼
ðt
0
MðuÞu du: (44)

Substituting the form of the memory function given in Eq. (20) for the
FML model into Eq. (44), we obtain

gþðtÞ
g0
¼ �sb�1

c

ðt
0
u�bE1�b;�b � u=scð Þ1�b

� �
du: (45)

At early times, during start-up of a steady shear flow, i.e., when
u=sc � t=sc � 1, the Mittag–Leffler function can be approximated62

and the above integral reduces to

lim
t=sc�1

gþðtÞ
g0
¼ b

Cð2� bÞ
t
sc

� �1�b

: (46)

At long times t=sc 	 1, the steady state shear viscosity in the limit of
zero shear rate is

lim
t=sc!1

gþðtÞ ¼
ð1
0
MðuÞdu ¼ g0: (47)

From Eqs. (31), (35), and (47), we clearly observe that at long
times t=sc 	 1 both the transient viscosity gþðtÞ and the steady-state
rate-dependent shear viscosity at an equivalent shear rate gð _c ¼ 1=tÞ
approach the steady shear viscosity in the limit of zero shear rate, g0.

If we assume an exponential damping function, then using
the Gleissle mirror relationship, the steady shear viscosity at high
Wi can be rewritten using Eq. (32) and substituting _c ¼ 1=t; we
obtain

lim
Wi=c�	1

gð _c ¼ 1=tÞ
g0

ffi bc�1�b t
sc

� �1�b

: (48)

Similarly, the steady shear viscosity at high Wi for a generalized
damping function of the form given in Eq. (14) [for the strong damp-
ing limit (m > 1� b)] can also be approximated from Eq. (36) by
substituting _c ¼ 1=t to obtain

lim
Wi=c�	1

gð _c ¼ 1=tÞ
g0

ffi pbc�1�b

mCð1� bÞ sin pð1� bÞ
m

	 
 t
sc

� �1�b

: (49)

Comparing Eq. (46) with Eqs. (48) and (49), we can see that the
exponent characterizing the growth in time of the transient viscosity at
short times is 1� b and is equal to the exponent characterizing the
rate-dependence of the steady shear viscosity at high shear rates
(where _c ¼ 1=t), provided the damping is sufficiently strong.
Equating the expressions for the front factors in these equations leads
to Eq. (43).

This asymptotic analysis shows that, similar to the conditions
derived for the Cox–Merz rule, the Gleissle mirror relation is also
expected to hold to within a constant numerical factor for sufficiently
strong damping forms. However, from Eq. (38), we can note that the
exponent characterizing the rate-dependence of the steady shear vis-
cosity at high Wi is not ð1� bÞ [since gð _cÞ � _c�m in the case of weak
damping] and hence the Gleissle mirror relation does not hold true in
the weak damping limit. Having the same condition (i.e., the need for
strong damping) for both the Cox–Merz rule and the Gleissle mirror
relation allows experimentalists to combine the Cox–Merz rule and
the Gleissle mirror relation in order to interconvert at will between the
linear viscoelastic envelope defined by the transient viscosity gþðtÞ,
the complex viscosity jg�ðxÞj, and the steady shear viscosity gð _cÞ.
This combination of the Cox–Merz rule and the Gleissle mirror rela-
tionship has been used by Yan et al.63 to combine data for polystyrene
melts.

As we noted earlier, the “mirror” name comes from the fact that
the exponent characterizing the dependence of the transient viscosity
with time is a reflection (on logarithmic axes) of the dependence of the
steady shear viscosity on shear rate as we have illustrated graphically
in Figs. 6(a) and 6(b) for the FML model. When reflected using
the mapping _c ¼ 1=t, high values of the Weissenberg number
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(Wi¼ sc _c 	 1) thus correspond to the linear viscoelastic response at
early times, sc=t 	 1 (or, equivalently t=sc � 1). Similarly, the steady
shear viscosity measured at low Wi values (Wi¼ sc _c � 1) will corre-
spond to the linear viscoelastic response at long times, sc=t � 1 (or,
equivalently t=sc 	 1).

When the Gleissle mirror relation is satisfied, we can also note
from Eqs. (43) and (41) that at high values of De (or sc=t 	 1) the
complex viscosity is always slightly greater than the transient viscosity
gþðtÞ—when reflected and plotted vs sc=t—because b=Cð2� bÞ
< 1 8 0 � b < 1. A comparison between the reflected transient vis-
cosity gþðtÞ (plotted as a function of sc=t), the complex viscosity, and
the steady shear viscosity is illustrated in Fig. 7 for the case when the
Gleissle mirror relation is identically satisfied [i.e., when Eq. (43) is
satisfied].

Finally, we show experimental data obtained for the 8% algi-
nate solution in Fig. 8(a). The transient viscosity corresponding
to start-up of steady shear flow at a low shear rate _c0 ¼ 0:02 s�1

(corresponding to Wi ¼ 0:0013) is compared with the FML predic-
tion (with no adjustable parameters) obtained by evaluating
Eq. (45) using the parameters given in Fig. 5. The power-law
growth in the viscosity at short times is evident and the quantita-
tive agreement between the FML model prediction and the mea-
sured data is excellent. In Fig. 8(b), we reflect these data (and the
model prediction) using the Gleissle mirror relationship (i.e., map-
ping t ! 1= _c). We also present the measured complex and steady
shear viscosity again to clearly illustrate the mirror-like relation-
ship between the steady shear viscosity and the transient viscosity
function that is measured at low shear rates. In contrast to Fig. 7,
the reflected transient viscosity data do not overlay exactly on the
steady shear viscosity because the numerical values of m, c�, and b
characterizing the alginate solution do not exactly satisfy Eq. (43)
but satisfy Eq. (41) more closely.

This reflective quality, although perhaps puzzling from an experi-
mental viewpoint, arises naturally in the integral framework employed
in the present work. This is because of the nature of the damping func-
tion and the limits of the integrals in expressions such as Eq. (16) which

cut off contributions from parts of the linear viscoelastic spectrum
beyond an upper limit that depends on the quantity Wi=c�, and thus
provide a direct connection to definite integrals such as Eq. (45).

V. CONCLUSION

In this work, we have derived mathematical expressions for the
steady shear viscosity, the complex viscosity and the transient (start-
up) viscosity for a Wagner integral constitutive formulation with a
fractional Maxwell kernel that compactly describes a complex fluid
with a broad spectrum of relaxation times. The resulting integral,
Eq. (4), is a simplification of the time-strain separable K-BKZ constitu-
tive equation that can capture many different forms of the relaxation

FIG. 6. (a) The transient viscosity for the FML model evaluated from Eq. (44) for b ¼ 0:5. (b) A comparison of the complex viscosity and the steady shear viscosity predicted
when Eq. (43) is satisfied. Here, the model values used are b ¼ 0:5; c� ¼ 0:8, and m¼ 2.

FIG. 7. Intercomparison of the transient viscosity gþ (plotted against sc=t), the
complex viscosity jg�ðxÞj, and the steady shear viscosity when Eq. (43) is satis-
fied. Here, the model parameters used are b ¼ 0:5; c� ¼ 0:8, and m¼ 2.
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spectrum, as well as different strain-dependent damping responses,
corresponding to what we have identified as weak and strong damping
limits. From the resulting expressions, we can summarize the follow-
ing key points:

• Empirical relations such as the Cox–Merz rule do not generally
hold true for materials exhibiting a narrow relaxation spectrum
characterized by a single relaxation time.

• The Cox–Merz rule as well as the Gleissle mirror relationship
will always hold true, to within a constant numerical factor of
order unity, for viscoelastic materials exhibiting broad relaxation
spectra and sufficiently strong strain-softening that can be char-
acterized by an exponential damping function or a generalized
form of Soskey–Winter damping [as given by Eq. (14)] with
m � 1� b.

• Neither the Cox–Merz rule nor the Gleissle mirror relationship is
satisfied for materials exhibiting broad relaxation spectra and
weak strain-dependent damping or softening such as the general-
ized damping given by Eq. (14) with m < 1� b.

Because the exponent in the fractional Maxwell model is always
limited to b < 1, the constraint we have identified above as strong
damping (i.e., m � 1� b) is, in fact, not very restrictive at all. For
example, the Doi–Edwards damping function corresponds to m¼ 2
and so satisfies this constraint for a wide range of viscoelastic materials
in which the relaxation spectrum is of Rouse (b ¼ 0:5) or Zimm
(b ¼ 0:66Þ form. This probably explains why these empirical rules
apply so broadly to many polymeric systems.16 It is also commonly
observed that the critical strain c� in many polymeric complex fluids is
of order unity. Under such conditions, we have shown from our analy-
sis and the plots in Fig. 4 that we should expect the magnitude of the
complex viscosity to be slightly greater than the steady shear viscosity
at high Wi and De [i.e., positive contour values in Fig. 4(a)]. This is in
agreement with the most commonly observed deviations from the
Cox–Merz rule reported by Vlassopoulos and coworkers.16 However,
they also note that in some highly branched polymer systems pre-
cise measurements can show that jg�ðxÞj < gð _cÞ at high Wi or De.

Careful inspection of Fig. 4(a) shows that our analysis also predicts
a small region at high Wi (between the dashed and solid lines)
where strong damping (and thus good agreement with the
Cox–Merz rule) is still observed but the ratio of viscosities is less
than unity. The values of m ’ 0:9 in this region correspond to the
damping function for a transient polymer network with relatively
little strain-softening, as would be expected for highly branched
materials.

There appear to be very few materials that fall into the weak
damping limit (m < 1� b). However, one class of systems are bread
doughs, which—due to hydrogen-bonding between gluten molecules—
form highly viscoelastic network-like materials that only strain-soften
very slightly, even up to high strains. They thus exhibit an almost (but
not quite) neo-Hookean response with weak strain-softening.64

Interestingly, the key numerical conditions that we derive for
satisfying the Cox–Merz rule [Eq. (41)] and the Gleissle mirror rule
[Eq. (43)] cannot both be satisfied identically, because the function on
the right-hand side of Eq. (43) has a value b=Cð2� bÞ < 1 for b < 1.
However, the actual numerical difference between these expressions is
small for most values of b (specifically, the difference is less than a
factor of two for 0:5 � b < 1). On a double logarithmic plot such as
Fig. 8, the difference is very small when b ¼ 0:56.

Although our analysis of these empirical relationships has been
based on continuum mechanics, we can also make connections to the
underlying mechanisms that are proposed to be important in micro-
scopic theories. Marrucci65 considered the impact of convective con-
straint release (CCR) on entanglement dynamics at high shear rates and
derived a non-integer power-law expression for rate-thinning in the
steady shear viscosity of entangled melts that are characterized by a
broad relaxation spectrum (specifically the Rouse spectrum correspond-
ing to b ¼ 0:5). By comparing the model predictions with the analytic
expression for the frequency dependence of the complex viscosity of a
Rouse chain, good agreement with the Cox–Merz rule (to within a
numerical constant of order unity) at high shear rates and frequencies
was demonstrated. Our continuummechanics-based approach does not
explicitly incorporate microscopic mechanisms such as CCR but is

FIG. 8. (a) Measured values of the transient viscosity at _c0 ¼ 0:02 s�1 of the 8% alginate solution are represented by data points and the FML prediction from Eq. (45) is
illustrated by the solid line. (b) Comparison of the reflected transient viscosity, complex viscosity, and the steady shear viscosity of 8% alginate solution. The solid lines rep-
resent the model predictions. The model parameter values are obtained from Fig. 5 and are m¼ 1.4, c� ¼ 2:5; b ¼ 0:56; g0 ¼ 7 Pa s, and G ¼ 23 Pa sb.
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consistent with the analysis of Marrucci; his incorporation of convective
constraint release into a rate-dependent relaxation time effectively
reduces the characteristic time scale for stress relaxation at high shear
rates, in much the same way that a strong decrease in the damping func-
tion does. Our analysis further shows that the Cox–Merz rule will also
be satisfied (in the limit of strong damping) for a wide selection of other
discrete or continuous relaxation spectra (beyond just the Rouse spec-
trum that fixes b ¼ 0:5) provided that they are of Rouse–Zimm form
and give GðtÞ � t�b at short times.

Mead, Larson, and Doi66 incorporated CCR into the
Doi–Edwards–Marrucci–Grizzuti (DEMG) theory and derived a multi-
plicative correction factor to the Doi–Edwards (DE) strain-dependent
damping function. This extended model is now commonly referred to
as the Mead-Larson-Doi (MLD) model. The correction factor in the
MLD model amplifies strain-softening at large strain amplitudes; how-
ever, the DE damping function by itself is already a “strong” damping
function by our definition (m¼ 2), as discussed in Sec. IV. Therefore,
the validity of the Cox–Merz rule for the MLD model reported in Ref.
67 is again consistent with the strong damping condition that we have
derived from our continuum mechanics analysis.

Finally, we note that the “shear blob” kinetic theory model intro-
duced by Rabin and Ottinger68 also aims to capture shear thinning in
polymer solutions through the effects of internal viscosity. They
develop an expression for the shear-induced evolution of the relaxa-
tion spectrum as internal dissipation in each shear blob becomes
increasingly important. The resulting relaxation spectrum becomes a
function of a “generalized Weissenberg number” and interpolates
smoothly between the zero-frequency and high-frequency limits of a
bead-spring chain. They note that in strong deformations, relaxation
processes in the chain are dominated by internal modes with time
scales shorter than s � _c�1. This is exactly analogous to the varying
cutoffs in the integrals we analyze in Eqs. (16), (45), and (48). The
combination of a broad relaxation spectrum and a rate-dependent
cutoff again results in a model that satisfies the Cox–Merz rule and the
Gleissle mirror relationship, and this is again consistent with our gen-
eral continuum analysis.

The interplay between constitutive modeling, mathematical analy-
sis, and experimental data represented in this paper is inspired by the
same considerations that permeate Bob Bird’s extensive contributions
to our subject. We hope that the results we have derived here provide a
better understanding of why these useful empirical rules work and why
they are so widely used throughout the complex fluids community.

ACKNOWLEDGMENTS

J.D.J.R. would like to thank Aramco Americas for financial
support of his studies on non-linear viscoelastic materials. G.H.M.
and B.K. would like to thank P&G for a gift to support work in the
Non-Newtonian Fluids group as well as Dr. W. Hartt and Professor
D. Vlassopoulos for motivating and insightful discussions.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

APPENDIX: COX–MERZ RULE FOR POLYSTYRENE
MELTS OF VARYING TOPOLOGY

As we have shown in the main text in Eq. (41), we need the
following condition to be satisfied for the Cox–Merz rule to be iden-
tically valid:

f ¼ pbðc�Þ1�b

mCð1� bÞ sin pð1� bÞ
m

	 
 ¼ 1: (A1)

Therefore, one can determine a priori by evaluating the numerical
value of f whether a given complex fluid is expected to satisfy the
Cox–Merz rule. This requires values of the damping function param-
eters (m and c�) and the exponent b characterizing the time-
dependent decay in the relaxation modulus [GðtÞ � t�b] at short
times (or the power-law dependency of the complex modulus at high
frequencies). If the value of f is close to unity, it indicates that the
Cox–Merz rule will be satisfied and thus allow for interconversion
between the steady shear viscosity and the complex viscosity.

Here, we apply this analysis to data obtained by Vlassopoulos
and coworkers for melts of linear polystyrene chains (PS-84k linear)
and polystyrene rings (PS-84k ring). The parameters characterizing
the damping function for the PS-84k linear chains and PS-84k rings
at T ¼ 150 � C are obtained from Ref. 63. Similarly, the power-law
exponent b characterizing the relaxation modulus at short times for
the PS-84k linear chains and PS-84k rings at T ¼ 150 �C are
obtained from Ref. 69. We fit the Soskey–Winter damping function
[Eq. (14)] to the measurements of hðcÞ as shown in Fig. 9. The
resulting fit is extremely good for both systems. The Soskey–Winter
damping function also accurately describes additional data provided
by the authors for blends of rings and chains; but these data are not
shown here for clarity. Both melts correspond to the strong damp-
ing limit with m > 1� b and we further note that the melt of

FIG. 9. Measurement values of the damping function for melts of linear polystyrene
chains as well as for entangled rings of the same molecular weight at T ¼ 150 � C
from Ref. 63. The general Soskey–Winter damping functional form in Eq. (14) pro-
vides a good fit to both sets of data as shown by the solid lines.
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entangled PS rings shows a significantly larger value of c�. The two
parameters (m; c�) characterizing the measurements of hðcÞ the lin-
ear FML parameter b and the numerical value of our criterion f
given in Eq. (A1) are tabulated in Table III.

From Table III, we find the numerical value of f evaluated
from Eq. (A1) to be close to unity for both the linear and ring sam-
ples. The two systems deviate from the exact criteria of f¼ 1 by a
maximum of 11% and 54%, respectively. However, even a factor of
1.54 is small when viscosity measurements are plotted on double
logarithmic scales, and falls within the reported variability. This
helps rationalize the excellent agreement with the Cox–Merz rule
for the 84k linear and ring polystyrene melts illustrated in the paper
by Parisi et al.69
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