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Abstract

The concept of a Deborah number is widely used in the study of viscoelastic materials to represent the ratio of a material relaxation time
to the time scale of observation and to demarcate transitions between predominantly viscous or elastic material responses. However, this
construct does not help quantify the importance of long transients and nonmonotonic stress jumps that are often observed in more
complex time-varying systems. Many of these nonintuitive effects are lumped collectively under the term thixotropy; however, no
proper nouns are associated with the key phenomena observed in such materials. Thixotropy arises from the ability of a complex struc-
tured fluid to remember its prior deformation history, so it is natural to name the dimensionless group representing such behavior with
respect to the ability to remember. In Greek mythology, Mnemosyne was the mother of the nine Muses and the goddess of memory.
We, thus, propose the definition of a Mnemosyne number as the dimensionless product of the thixotropic time scale and the imposed
rate of deformation. The Mnemosyne number is, thus, a measure of the flow strength compared to the thixotropic time scale. Since long
transient responses are endemic to thixotropic materials, one also needs to consider the duration of flow. The relevant dimensionless
measure of this duration can be represented in terms of a mutation number, which compares the time scale of experiment/observation to
the thixotropic time scale. Collating the mutation number and the Mnemosyne number, we can construct a general two-dimensional
map that helps understand thixotropic behavior. We quantify these ideas using several of the simplest canonical thixotropic models
available in the literature. © 2022 The Society of Rheology. https://doi.org/10.1122/8.0000432

. INTRODUCTION

In 1964, Marcus Reiner [1] during an after-dinner talk at
the 4th International Congress on Rheology introduced the
core rheological concept of the Deborah number (De) as a
ratio of time scales; specifically the relaxation time of the
material of interest as compared to the time scale of observa-
tion. The concept became central to the rheology community
very quickly, and decades later, we commonly compare and
contrast different time scales associated with rheological fea-
tures of different linear viscoelastic material systems through
this ratio, as well as other dimensionless groupings that quan-
tify the additional (nonlinear) responses of more complex
materials. For instance, in polymeric systems and processing
flows, the Weissenberg number (Wi) provides an indication
of how important nonlinear rheological effects such as
normal stress differences are in the material response of a
complex fluid [2,3], while the Reynolds number (Re),
familiar to many from fluid mechanics, provides a relative
measure of fluid inertia to viscous stresses. Both of these
latter parameters depend on the imposed flow strength;
however, their ratio Wi/Re (commonly referred to as the
elasticity number, El) is independent of the flow rate and
provides a measure of the relative importance of viscoelas-
tic stress relaxation to the viscous diffusion time [4].

Such designations help in probing the role of flow without
changing the material properties. For instance, one can
change the Reynolds number and independently discuss the
elastic effects. When considering suspensions under flow,
one can compactly represent the rheological behavior with
respect to the ratio between the rates of advection to the rate
of diffusion, resulting in the Péclet number (Pe) [5]. One
could argue that Wi and Pe both represent the ratio of the
strength of the flow compared to the natural time scale for
evolution of the material’s [micro]structure, whether driven
by viscoelastic relaxation or Brownian diffusion. In more
complex attractive particulate systems, the Mason number
(Mn) formed from the ratio of viscous shearing forces to
attractive interparticle forces again provides an effective
dimensionless group to represent the quasisteady state rhe-
ology of colloidal gels. Once again, the ratio of these two
parameters, commonly denoted A = Pe/Mn, is dimensionless
and independent of flow strength and provides a relative
measure of how strong interparticle attractions are compared
to the randomizing forces of Brownian motion. It is interest-
ing to note that in both of these examples no proper names
are associated with the (dimensionless) ratios of two (epon-
ymous) dimensionless product groups.

While these dimensionless groups have been extremely
useful and important in categorizing the different regimes of
material response observed in complex fluids and in con-
fronting rheometric data with the predictions of appropriate
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constitutive models, they cannot help us in quantifying
or describing the long transients and nonmonotonic stress
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jumps observed in other more-complex time-varying
systems. Many of these confusing and nonintuitive effects
are lumped collectively under the term Thixotropy and its
antonym Rheopexy (or anti-thixotropy). This vast field has
been reviewed extensively and authoritatively (see, for
example, [6—13]); however, no proper nouns are commonly
associated with key phenomena or underlying physical pro-
cesses observed in such materials. This is perhaps due to
conflation with a plethora of other rheological phenomena,
such as dilatancy, shear-thinning, and viscoelasticity with
thixotropy, which muddied the development of the field [14].

The term thixotropy was originally coined in 1927 by
Peterfi [15], combining the Greek words thixis (stirring or
shaking) and ftrepo (turning or changing), to describe the
ability of living cells to regain their original solidlike state
during a period of rest, after first being driven into a liquid-
like state by agitation (a process we would now more appro-
priately refer to as rheological aging; see, for example, the
clear discussion in [10], and a historical perspective in
[16,17]). Virtually all other early accounts of thixotropic
behavior have to do with the sol-gel transition, and the
ability of particulate gels to resolidify (due to interparticle
interactions) after becoming completely liquefied under flow
[18-20]. As described in [16], some of these thixotropic
effects can be discussed in the context of “aging” and “reju-
venation” of structured fluids. Nonetheless, aging commonly
refers to restructuration of a fluid under quiescent conditions.
Thixotropy, however, emerges under nonzero imposed defor-
mation rates, and as such it is important to discuss thixotropic
effects under flowing conditions.

In Larson’s review [9] of thixotropic constitutive models,
a clear definition and a distinction are presented for thixo-
tropy vs nonlinear viscoelasticity: “a time-dependent viscous
response to the history of the strain rate, with fading
memory of that history.” The concept of “fading memory”
was first introduced in the context of viscoelasticity by
Coleman and Noll [21]. Note that although Coleman and
Noll described fading memory with respect to viscoelastic
constitutive models, the very same concept can be associated
with thixotropic memory; indeed, when viewed from a con-
tinuum mechanics perspective there is no distinction.
However, when discussing the memory effects, distinctions
can be drawn from a microstructural perspective (albeit not
necessarily appearing in the constitutive description of the
system), by distinguishing formation and fading of the
memory caused by convective processes and the imposed
flow, referred to as the “kinematic memory,” versus the vis-
coelastic memory of a polymer chain or other deformed
macromolecular structure as a tendency to relax (or recoil)
toward a maximum entropy configuration. In a sequel
review [10], Larson clearly notes that few, if any, fluids may
exhibit purely thixotropic behavior and that thixotropy com-
monly co-exists with viscoelasticity, and it can be difficult
to clearly separate the two effects. Nonetheless, here we also
adopt a similar definition as Larson for ideal thixotropy, as a
reversible, inelastic, time-dependence of the viscosity
(and/or a shear yield stress) during and after flow. From a
thermodynamic perspective, descent toward an energy mini-
mizing state can be driven by enthalpic and/or entropic
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effects. One could argue that in primarily viscoelastic fluids,
e.g., polymer solutions, it is maximization of a polymer
chain’s entropy that drives the microstructural dynamics and,
thus, the viscoelastic stress relaxation of the fluid in general.
In contrast, for essentially thixotropic fluids, e.g., attractive
colloidal gels, finding local/global energy minima is con-
trolled by directly reducing the potential energy of the col-
loidal assembly through particle-particle interactions. This
provides a contrast between the underpinnings of viscoelas-
ticity and thixotropy: viscoelastic effects emerge from
microscopic (single particle/chain level) configurations and
are, hence, commonly associated with shorter time scales,
while thixotropic effects originate from mesoscopic (cluster/
multiparticle level) rearrangements of the structure that natu-
rally evolve over longer time scales.

A common rheological probe of thixotropy is often taken
to be the appearance of hysteresis in an up/down stress
(or rate) sweep, the so-called Thixotropic Loop (see, for
example, [14] or [22]) However, such hysteresis loops can
result from a number of different physical origins. In ground-
breaking early work, Bird and Marsh [23] showed that a
variety of distinct hysteresis loops can be generated using
slowly varying shear flow protocols with the nonlinear visco-
elastic models available at the time. Even earlier, Fredrickson
[24] (Chapter 6, Viscoelastic Substances) demonstrated that
hysteresis signals can even be generated using an up/down
ramp of the linear Maxwell model if unsteady inertial effects
and the propagation of shear waves across the rheometer gap
are considered. It is worth noting that although the effects of
viscoelasticity can manifest in qualitatively similar hyster-
etic signatures as thixotropy, the two behaviors can often be
distinguished pragmatically by differences in magnitudes
and time scales. That is, the inherent separation in micro-
structural length scales described above often translates into
viscoelastic (entropic) memory effects being demonstrated
over a few strain units, and thixotropic (kinematic) memory
effects occurring over tens or hundreds of strain units.
Although in most real-world industrial complex fluids (e.g.,
formulated paints and inks containing polymers, surfac-
tants, and colloidal pigments), a wide spectrum of length
and time scales may be important, as Larson states in [10],
“it is a matter of pragmatic judgment whether a real materi-
al’s behavior is close enough to the ideal to warrant a par-
ticular terminology.”

Through the careful design of a suitable rheometric proto-
col (which we discuss at more length later), Divoux and
co-workers [25] showed that the fading response of a fluid to
the history of deformation can, in fact, be characterized by a
thixotropic time scale (which they identify as 6 but hence-
forth we shall denote 74; to be more consistent with SOR
nomenclature), on which the material shows the most pro-
nounced sensitivity to the history of the deformation rate.
Just as real viscoelastic fluids typically exhibit a spectrum of
relaxation times, a typical thixotropic material may also show
a range of thixotropic time scales [26]; however here, for
simplicity, we assume that (just as in modeling of polydis-
perse viscoelastic responses) this distribution can be ade-
quately and compactly represented by an appropriate moment
or average of the underlying thixotropic time-scale spectrum.



THE MNEMOSYNE NUMBER

There has been a re-awakening and growth of interest in
thixotropy over the past few years, most probably because of
its ubiquity in many real commercial systems. A concise but
comprehensive summary of recent developments in the con-
stitutive modeling of such systems has been given recently
by Varchanis et al. [27]. Ewoldt and McKinley [28] have
also discussed three-dimensional phase map representations
for thixotropic elasto-visco-elastic (TEVP) materials, in
which plastic and viscoelastic behavior can be simultane-
ously observed with thixotropy; however, the lack of a clear
and definitive nomenclature for the dimensionless groups to
be used for parameterizing the magnitude of each effect
results in ungainly terms such as the thixoviscous (TV)
number and thixoplastic (TP) number. The goal of this
article is to propose suitable names for these dimensionless
groups that can then be used by the rheology community to
conceptually represent and discuss different aspects of thixo-
tropic behavior in a clear and unambiguous manner. As such,
recognizing that thixotropy and viscoelasticity have similari-
ties in their rheological signatures, we intend to propose a
series of dimensionless groups, as well as flow protocols,
that target thixotropic effects specifically.

Il. MNEMOSYNE: THE GODDESS OF MEMORY

Astutely, when proposing the concept of the Deborah
number to quantify phenomena being observed and reported
in a dynamically evolving field, Reiner avoided association
with living rheologists, and we take the same approach here.
We recognize that every thixotropic (or antithixotropic)
effect observed in a complex fluid is owed to its ability to
remember the history of its previous deformation. Hence, it
is natural to name the dimensionless group representing
such behavior with respect to the ability to remember. In
Greek mythology, Mnemosyne was one of the Titans, and
the goddess of memory and remembrance. She presided
over a river (or a spring) that flowed in parallel to the river
of Lethe, the embodiment of forgetfulness. The dead, before
reincarnation, drank water from the river Lethe to forget
their past, in contrast to the idea of drinking from the
Mnemosyne for novices in the Orphico-Pythagorean broth-
erhood [29]. In contemporary language, we use the term
mnemonic to refer to an artifact or device to help us remem-
ber a key concept or result. We, thus, propose to define the
Mnemosyne number as the dimensionless product of the
appropriately defined thixotropic time scale of a material
and the imposed rate of deformation: My = 7ty y. We
propose the abbreviation My to avoid any confusion with
the Mason number (Mn) that is already used in studies of
colloidal gels. In any given kinematic situation, a high value
of My indicates the potential for pronounced thixotropic
memory of previous flow conditions and, thus, we expect
the Mnemosyne number to capture (at least in part) a suit-
able measure of the extent of thixotropy in a system.

The value of the Mnemosyne number allows us to clearly
distinguish thixotropic phenomena from other rheological
responses; and any rheometric test or processing flow of
interest may correspond to vanishingly small values of Re,
De, and/or Wi, but a finite (and perhaps large) value of My.
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For instance, in shearing of carbon black or clay suspensions,
nonlinear viscoelastic effects (such as normal stress differ-
ences) are typically much smaller in magnitude and less
important than thixotropic transient responses in the shear
stress, so Wi <« My. The ratio Wi/My = 7 /Tpix has been pre-
viously referred to as a thixoelastic parameter by Ewoldt and
McKinley [28] and helps distinguish whether nonlinear
elastic effects are more important (Wi/My>> 1) or thixotro-
pic/aging effects dominate (Wi/My < 1). Experimental proto-
cols for distinguishing such effects have recently been
considered by Agarwal et al. [13]. We do not seek to rename
this quotient because, like the quantities Wi/Re and Pe/Mn
discussed above, it is a deformation-rate-independent quan-
tity formed from the ratio of two extant, and already named,
dimensionless parameters.

The Mnemosyne number, as defined here, is a measure of
flow strength compared to the thixotropic time scale.
However, because of the long transient responses endemic to
thixotropic materials, one also needs to consider the duration
of any flow protocol in order to determine how large the
magnitude of the actual thixotropic rheological response is.
In dealing with many thixotropic materials, the experimental
protocol commonly involves a preshearing state at large
deformation rates for a carefully prescribed period of time in
order to erase the material’s memory of its previous flow
history (e.g., the initial trauma of loading it into a rheometer).
It is appropriate, thus, to refer to this preshearing process as
“letherizing” the material sample, as the memory of its previ-
ous life(s) is forgotten. For instance, in order to fully lether-
ize a thixotropic sample, strong flows of long duration are
required. Note that as opposed to a kinematic definition of a
strong vs weak flow (in terms of a positive Lyapunov expo-
nent and the exponential stretching of material elements),
within the context of thixotropy the term ““strong flow” corre-
sponds to ones for which My > 1. The relevant duration of a
flow or rheometric test protocol (which we denote for clarity
as fexp) for a time-evolving material has been considered
quite generally by Mours and Winter [30], and they argue
that this can be represented in terms of a mutation number:
Mu = texp/Tihix, which compares the duration of the experi-
ment/observation to the time scale characterizing the rate of
change of the material (here the thixotropic time scale 7y;x).
For example, in order to ensure that a viscoelastic fluid does
not change its properties significantly or evolve during a typi-
cally oscillatory test (for which the duration is fex, ~ 27/w)
we require Mu < 1. This constraint has prompted the devel-
opment of new fast oscillatory shear test protocols such as
the Optimized Windowed Chirp [31].

lll. MUTATION-MEMORY MAPS

Combining these considerations regarding both the
strength and the length of a specific shearing protocol, it
becomes clear that the Mnemosyne number and the mutation
number can be used to construct a general two-dimensional
map of thixotropic behavior as shown schematically in
Fig. 1. First, we note that during a specific time-dependent
flow protocol (e.g., start-up of steady shear flow), the product
of these two dimensionless groups gives a measure of the
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FIG. 1. A proposed phase map for representing, locating, and understanding
common rheological phenomena associated with rheological characterization
of thixotropic materials in terms of the Mnemosyne number, My and the
mutation number, Mu. The lower figure shows a generic measure of the non-
monotonic evolution rheological hysteresis (see the text for suggested defini-
tion) as a function of the experimental duration (or mutation number) of the
experiment.

total accumulated strain: My.Mu = (Tiix - ¥)(Fexp/ Tthix) = 7>
as indicated by the broken hyperbolic lines. Low strains
correspond to the lower left and large strains to the upper
right of this operating space. We now consider the physics
captured in different quadrants of this thixotropy map. The
viscoelastic response of a TEVP material can be reliably
measured using weak flows of (relatively) short duration
located in the lower left of the map Mu<1, My<1).
Here, thixotropic changes to the material as well as the
total shearing deformation imposed are rather small and the
sample does not mutate during the experimental test. In
contrast, very strong and long flows in the upper right
(Mu> 1, My> 1) are used to letherize the material into a
fluid-like behavior and eradicate all memory of the previ-
ous states of the material.

At the heart of this map at intermediate total strains lie
regions with pronounced thixotropic and hysteretic effects.
This is the region where long-duration—and frequently
confounding—transient dynamical responses such as non-
monotonic stress evolution and/or transient shear banding
are observed. We explore this regime in greater detail
below. To the far right of this figure at small My, and large
Mu, (corresponding to weak thixotropic effects and longer
observation times), one can recover the quasi-steady flow
curve of a material, provided the accumulated strain is also
large enough that the system evolves (or mutates) toward its
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steady flowing state. Conversely, very large values of My
and very small Mu (corresponding to the upper left of
Fig. 1) correspond to the process of quenching a time-
dependent thixotropic material into a nonequilibrium (often
glassy or nonequilibrium gel) microstructure.

Finally, for completeness, we note that other time-dependent
effects such as “rheological aging” of glassy materials are
possible even under rest (no imposed flow) conditions.
These effects are clearly distinguished from thixotropy by
Wei and Larson (see Sec. II B of [10]). Such phenomena
(corresponding to ¥ = 0) evidently cannot be uniquely rep-
resented as coordinate points on a two-dimensional map of
the form of Fig. 1 and would necessitate a more complex
(but straightforward) three-dimensional representation,
which we do not pursue further here. The dynamic rheolog-
ical process commonly known as “rejuvenation” would cor-
respond to projection of a material’s coordinates from high
(i.e., “old”) values of this third (as yet unnamed) material
age axis back to low values characteristic of a rheologically
young material.

As we have depicted schematically in the lower part of
Fig. 1, quantitative measures of the rheological hysteresis
that arises during shearing of a thixotropic material are
expected to be a function of the time scale of the experimen-
tal test protocol (or, equivalently, the mutation number Mu)
and will be most pronounced in intermediate strain/time
regimes. To generate quantitative and reproducible thixotro-
pic data to map out this nonmonotonic hysteresis curve, it is
essential to first develop a robust rheometric test protocol.
Early experimental iterations of specialized instruments such
as the Thixotrometer of Pryce-Jones [32] often used “thixo-
tropic loops” starting from rest conditions and first increas-
ing (and then decreasing) the imposed shear rate (or shear
stress) and are reviewed in detail by Bauer and Collins [14].
However, for many structurally sensitive commercial systems,
as well as model colloidal “soft glassy” materials, the initial
state of the sample is a strong function of the loading/prepara-
tion history, as well as the waiting time ¢, before the experi-
ment is performed. This can make it hard to achieve repeatable
and device-independent data. Mewis [7] has argued convinc-
ingly for the adoption of “step rate” tests (in which the shear
rate on the material is jumped rapidly from a low value to
high value or vice versa). Performing a series of such step-
rate tests provides a rich dataset that indeed maps out the
functional describing the entire thixotropic material response
envelope but can be extremely time-consuming to generate
and analyze. In a very recent paper, Choi et al. [33] used a
series of stress jump experiments and mapped thixotropic
behavior to distinguish between elastic and viscous contribu-
tions to the total fluid stress.

Recently, Divoux and co-workers [25,34] have described a
somewhat simpler but robust ramp-down/ramp-up flow proto-
col that provides the data density required to probe the spec-
trum of thixotropic responses in a material in a more
efficacious way. One begins in the upper right of Fig. 1 at an
initially large shear rate, y;, corresponding to a fully letherized
material (thus generating a repeatable and history-independent
initial configuration) and then imposes a series of different
shear rates down to a final minimum shear rate, j/f before
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reversing the process and returning back to the initial (large)
shear rate. These down/up ramps may consist of a series of n
discrete steps, each of length At (as utilized in [25] so that the
total elapsed time is fex, = nAt) or, perhaps more conveniently,
a single continuously varying ramp down at a specified rate, r.
This continuous ramp could also be chosen to be linear, or a
power-law or exponential in character. In recent dissipative par-
ticle dynamics (DPD) computations with an attractive colloidal
system [35,36], we have shown that although the precise
numerical values of the computed hysteresis measure will
change for each ramp protocol, the qualitative features of this
protocol are very robust and quite generally of the nonmono-
tonic form sketched in Fig. 1.

In Fig. 2, we illustrate a number of different possible proto-
cols, namely, a step-wise (blue solid line) and a continuous
ramp down/up (red broken line), a single step jump or
“quench” protocol to a low final shear rate (orange dashed
curve) and finally a simple start-up of steady shear flow proto-
col (as shown by the green dotted step function) at an arbitrary
deformation rate. The top figure depicts the temporal variation
in the applied deformation rate of these different protocols for a
given (constant) experimental duration At..,, while the bottom
figure shows the corresponding graph mapped onto the Mu—My
diagram with direction indicated by an arrow. Different levels
of shading/transparency increments show different (increasing)
values of At Note that the initial departure point on the
Mu—My diagram for each of these protocols is selected to
always lie within the fully letherized state (so that all previous

. ——  Step Ramp Down/Up
& (t) === Continuous Ramp Down/Up
. — = Stress Jump / quench
7i TTTTEl . e Start-Up of Steady Shear
Tl N n ey s
0 >
0 exp
\
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€ —mmmm— -

<

FIG. 2. The time-varying shear rate as a function of time for a given At.,,
for different flow protocols (top), and the corresponding values mapped onto
the proposed Mu—My diagram. Different color transparencies indicate differ-
ent values of Afeyg,.

deformations have been forgotten). The stress jump and quench,
step-wise, and continuous ramp protocols for a given At are
indistinguishable on this diagram. Thus, for illustration pur-
poses, different circular points indicating different values of the
prescribed shear rate steps are shown on top of the continuous
line for ramp down/up protocols, and a dashed line (with no
intermediate points and just a final state at ;) is presented for
the stress jump/quench protocol. In contrast, the start-up of
steady shear experiments (shown by green squares) is repre-
sented by a series of horizontal points on the Mu—My diagram,
as the applied shear rate (and, thus, the Mnemosyne number) is
constant throughout, and the experimental time that enters the
numerator of the mutation number increases monotonically with
the time of shearing. It is important to note that the entire Mu—
My space can still be explored using this protocol by performing
a series of start-up experiments at different values of the
imposed shear rate—corresponding to a series of horizontal
sweeps through this Mu—My parameter space.

For didactic simplicity, we only consider in detail here a
linearly varying shear rate y(¢f) =y, — rt performed at a
(user-selectable) rate r. The total time of the down-ramp
experiment is then fex, = (¥; — ¥,)/r and consequently the
kinematic history of the down-ramp test can also be written
as y(1) = y; — (7; — ¥p)(t/texp)- A typical protocol may select
7;=100s"" and y, = 1s~!, followed by an up-ramp with
the initial and final shear rate values interchanged. As pro-
posed by Divoux et al. [25] and adapted by [34-36], an
appropriate measure of the rheological hysteresis arising
from thixotropy is then the difference in areas under the
apparent (nonequilibrium) flow curve of o(y) measured on
the up/down trajectories,

Vi Vi
Apo = — Jo.(down) dlog y + JO.(UP) dlog y
iz Ty
Vi
= [ sotira tog . 1)

14

where Ao () = ¢"P) — g4 and can, in principle, be posi-
tive or negative (for an antithixotropic material). To avoid
ambiguity and focus on the magnitude of the hysteretic
effects, we follow [25] and use the absolute magnitude of the
stress difference, |Ao(7)|, in up/down ramps. In this formal-
ism, the shear rate is logarithmically spaced so that an equal
weight is given to low and high shear rates [25].
Nonetheless, the hysteresis area as defined in Eq. (1) is not
dimensionless and we, therefore, normalize the hysteresis
area by the area under the ramp-down flow curve (also sche-
matically shown in the bottom right sketch of Fig. 3), result-
ing in the following definition of a dimensionless hysteresis
measure that captures the extent of thixotropy in a material,

_ J'|Ae(ld log
A. — f

(o}

=— . 2
’J‘}’x O.(down) d log }, ( )
1

One could alternatively nondimensionalize the hysteresis
area defined in Eq. (1) by scaling the shear stress values by a
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FIG. 3. An example of: (top) a repeated up/down ramp protocol, and (bottom) a shear rate (or shear stress) jump experiment, for probing rheological hysteresis
and identifying the thixotropic time scale of a material. The quench experiment provides a convenient protocol for monitoring the recovery of the material [as
represented here schematically by the evolution in a scalar structural parameter A(y, #)]. Between each ramp ry (k=1, 2, 3,...), a letherizing period at high shear
rate (¥;) rejuvenates the material. The high value of the initial Mnemosyne number My; ensures elimination of any shear-induced structure (SIS) formation, and
monitoring the time-invariance of o(y;) also allows us to check that no long-term irreversible effects such as sample drying or progressive shear-induced
sample degradation are in play. On the right we have sketched the corresponding apparent flow curves o(y; r) that might be expected for a thixotropic material
with a yield stress (for a recent example, see [37]), but the existence of a yield stress in the thixotropic material is not essential.

yield stress o), and normalizing the shear rate values by 7;;
however, not all thixotropic fluids exhibit a yield stress, and
even for the ones that do, from an experimental point of view
the precise value of the yield stress is not necessarily always
clear (and may vary with the protocol used to measure it).
By imposing a series of different up/down ramp rates ry (for
k=1,2, ..., N) as shown schematically in Fig. 3, we can
then systematically map out the (typically) nonmonotonic
evolution of the hysteresis area in the apparent flow curve
o(y(t; r)) and identify the characteristic thixotropic time scale
Tmix Of the test material. One can define the thixotropic time
scale Tyix as the peak of the hysteresis area when plotted
against the time interval of the experiment as suggested by
Divoux et al. [25]. Nonetheless, to avoid unambiguity, and
for consistency, we define the thixotropic time scale zgpix to
be the time scale required for a full recovery of shear stress
(and hence microstructure) upon a stress jump experiment
from an initially large deformation rate, y,;, to a nonzero
small rate of y,. For very long duration experiments (with
large values of 7., ), the quasistatic nature of the experiment
means that the equilibrium flow curve is obtained with little/
no hysteresis. However, as the ramp rate down/up is
increased, the experimental duration becomes progressively
shorter, and rheological hysteresis becomes significant, if
the sample is thixotropic. Additionally, one should note that
for controlled stress experiments similar descriptions as in
Egs. (1) and (2) can be written based on the overall
(measured) values of the deformation rates at the beginning
and end of the ramp. However, in the case of yield stress

fluids, sweeping stresses down (below a dynamic yield
stress) and subsequently up (above a static yield stress) can
result in even more complex hysteretic loops and, thus, dis-
torted measurement of a thixotropic time scale. Thus, here
we will focus on controlled rate experiments, which result in
well-defined closed-loop hysteresis curves.

This time-varying deformation protocol is, thus, another
example of mechanical spectroscopy, in the same way that
(for a nonmutating, viscoelastic material) imposing a
sequence of different oscillatory deformation frequencies
(either as a set of discrete frequencies with 7ey, ~ 27/w or in
a single, time-varying ‘“chirp” waveform) probes different
well-defined states—such as the terminal regime (at low fre-
quencies) and the rubbery plateau (at high frequencies)—as
well as enabling determination of the full relaxation spectrum
of the material. Similarly, orthogonally superposed chirp
waveforms can be devised as a fast probe of the rheological
response in rapidly mutating complex fluids [38].

Very rapid ramp rates down from y; are akin to mechani-
cally “quenching” the microstructure of the material in its
fully letherized (shear-rejuvenated) state. A useful analogy
here is the rapid thermal quenching of molten metals in order
to form metallic glass states with markedly different mechan-
ical properties, as compared to slowly cooled “equilibrium”
microstructures that commonly feature polycrystalline
domains. Recent simultaneous measurements of microstruc-
ture or conductivity and dynamic modulus in carbon black
pastes being developed for battery slurries have also illus-
trated the variety of nonequilibrium states that can be
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developed in thixotropic microstructured materials [39]. Our
previous simulations of attractive colloidal gels also show
clearly that the microstructure and moduli of a quenched gel
can be quite different from slowly gelled samples [35]. As
such, the linear viscoelastic regimes that also cover the
quenched samples may or may not represent an equilibrium
state for the microstructure. However, letherized states in the
Mu—My map of Fig. 1 will always correspond to equilibrium
states of the microstructure. Of course, we must bear in mind
that some complex fluids may have such short thixotropic
time scales that it is not possible (within the limitations of
current rheometers) to quench the structure fast enough to
explore the full nonmonotonic curve of As(r). This seems to
be the case for carefully prepared Carbopol samples which
have a thixotropic time scale of less than one second [25]
and, thus, always reside toward the far right of Fig. 1.
Similarly, we may never be able to shear a material strongly
enough to fully letherize it and completely eliminate
memory of its previous lives (see the discussion in Sec. II D
of [10]). Regardless of the choice of flow protocol adopted
for quantitative measurement of thixotropic time scale, one
would argue that once this time scale is measured, Mu—My
diagrams such as the one sketched in Fig. 1 can be used to
describe different flow regimes, as one axis describes the
strength of flow and the other one the time of observation.
Pipkin diagrams are based on similar principles and have
been used consistently for understanding nonlinear visco-
elastic material responses.

IV. RHEOLOGICAL HYSTERESIS IN COMMON
MODELS FOR THIXOTROPY

Finally, we note that this framework is also of use in
understanding the response of constitutive equations written
for thixotropic materials. Virtually all inelastic constitutive
equations, beginning with the expression proposed by
Goodeve [40] to enhanced variants such as those discussed
by Coussot et al. [41], to other variations of elastoplastic
constitutive models such as Acierno’s model [42], and
detailed phenomenological elastoviscoplastic models such
as the Isotropic-Kinematic Hardening (IKH) model [43—-46],
resort to a description of the evolution in one (or more)
scalar thixotropy parameter(s), A(f; 7(#')), which capture
some appropriately weighted and normalized measure of the
evolving distribution in the microstructural states within the
material. Some recent efforts have shown that viscoelastic
models can also be used to augment the range of thixotropic
effects described [33,47]. The evolution in this thixotropy
parameter then controls the bulk rheological response of the
material. Early computational explorations of this form
(including up/down hysteresis loops) can be found in the
pioneering work of Frederickson [48].

A detailed review of different constitutive models for
thixotropic fluids is provided in [9]. In the simplest generic
form, one can construct a time-evolving functional for this
structural parameter that might be written generically as

a1
dt Tmix

(I —=2) - pay. 3)
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The first term on the right describes “creation” or rebuilding
of microstructure, while the second is a shear-rate-dependent
destruction term. The buildup rate is determined by the char-
acteristic thixotropic time of the material, and  is a (material-
dependent) dimensionless parameter describing how effec-
tively the microstructure is broken down under shear. A
simple steady-state solution of such an equation (at a given
deformation rate) yields 4 = 1/(1 + 8 My), clearly illustrating
the role of the Mnemosyne number in quantifying changes in
the microstructural state and (ultimately) the bulk rheology of
a thixotropic material under shear. A full time-dependent sol-
ution of Eq. (3) for a time-varying up-down ramp y(¢; r) cor-
responds to a vertical trajectory through the state map in
Fig. 1; starting at the top (i.e., at a high initial shear rate with
My; > 1) and moving first down (i.e., a ramp down in shear
rate to a final value y, with My < 1) and then back up (i.e.,
a ramp up in shear rate). The specific value of Mu for this test
is set by the specified ramp rate . The degree of hysteresis
measured (or computed) during this down/up ramp will of
course depend on the ramp rate r and the specific form of the
thixotropic constitutive model under consideration (of which
there are myriad; see, for example, the discussion/review of
Varchanis et al. [27] or [47]).

Here, for illustrative purposes, we have performed a simple
numerical investigation of the flow protocol mentioned above,
7() = 7; — (i — 7p)tltexp), With Eq. (3) governing the time
evolution of the thixotropy parameter, A(z; 7(¢)). One then can
select or construct different constitutive equations for the stress
response of the fluid under such flow protocols. We present
three simple limiting cases of some canonical thixotropic con-
stitutive equations:

(1) An inelastic thixoviscous (TV) fluid in which the shear
stress response to an applied deformation rate is given
by o(t) = [n, + n,At; ¥(1))]¥ (). Here, the total viscos-
ity of the thixotropic material is written as a sum of
contributions from an invariant background Newtonian
solvent viscosity, 7, and from the evolving structural
viscosity, 1,A(7).

(i) A thixoplastic (TP) fluid with the constitutive equation
is given as o(t) = o,A(t; 7(¢)) + n,y7(¢), for which the
value of the yield stress, oy, depends on the level of
structure in the material but the plastic shearing vis-
cosity remains constant.

(iii) A thixo-visco-plastic (TVP) fluid (which might also be
referred to as a thixotropic yield stress fluid or TYSF
[29]) that takes a constitutive form combined from (i) and
(i) as o(r) = oyA(t; 7(1) + [ns + mpA(t; y(1))]17(2). For a
TVP fluid, the evolution of the microstructure characteriz-
ing the material directly changes the yield stress as well as
the plastic viscosity of the fluid.

Of course, there are a myriad of other functional forms,
some of which have been developed to include the role of
elasticity as well [43,46,49]; however, here, we focus on a
simple class of inelastic models with no elastic response.
Note that for all three formulations examined here, a material
with no microstructure, 4 =0, corresponds to a simple
Newtonian rheology. In the numerical calculations described
below, we fix the value of the yield stress at oy, = 20 Pa, the
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Newtonian viscosity at 77, = 1 Pas and the structural viscosity
at 17, = 4 Pas to be broadly consistent with the carbon black
gels considered by Helal et al. [39]. Finally, for illustrative
purposes, we set Tyix = 10s consistent with the results of
Divoux et al. [25]. The transient solution for the evolution in
the thixotropy parameter [Eq. (3)] is independent of the
choice of stress constitutive equation and is presented in
Fig. 4 for a prototypical choice of f = 0.1 and a very wide
range of experimental durations varying from 102 to 10°s.
The solid lines represent the ramp-down flow from the initial
shear rate of 7, =100s~! to the final shear rate of
7r=0.1 s~! and the dashed lines represent the ramp-up pro-
tocol back to the fully letherized or destructured state (often
also referred to as “shear melting”). There are many features
that are clearly evident in the thixotropic structural evolution
curves shown in Fig. 4. First, one can immediately identify
hysteresis loops as the ramp up/down curves do not collapse
onto each other for intermediate experimental durations. For
very short flow durations, Mu == 0, the material does not have
sufficient time to build up structure and, thus, A remains
virtually null for the duration of the experiment, resulting in a
negligible hysteresis area. On the other hand, for very long
experimental durations, Mu > 1 and for each instantaneous
shear rate, the thixotropy parameter evolves to its quasisteady
state value. Thus, the hysteresis area is minimal or nonexistent
for this regime as well. The parameter 3 directly controls the
effectiveness of shear flow in breaking up the structure and,
thus, controls the quasisteady state value of A1 to be
A1) = (1 + Bruixy () = 1/(1 + fMy(¢)). For our choice of

0.8

0.6

Increasing 7,

A(1)

0.4

0.2

Shear Rate, 7 (¢) [SflJ

FIG. 4. Numerical solution of Eq. (3) for time evolution of the thixotropy
parameter, A(¢, ), under a linear ramp down/up flow protocol as shown schemati-
cally in Fig. 3. The color increments from blue to red represent (see color version
online, and indicated in print by the direction of the arrow) represent progressively
longer total times of experiments, fey, corresponding to different mutation
numbers ranging from Mu = 1073—10°. The solid lines present the initial ramp-
down and dashed lines represent the subsequent ramp-up flow protocol for the
same experimental duration. An initial value of A = 0 is assigned to the fully leth-
erized state at the initial high shear rate (y;). The black hollow circles spaced
along the bounding axes represent the trajectory of a sudden flow cessation experi-
ment, in which the shear rate is reduced from y; to 7/, instantaneously (i.e., the
flow is “quenched”) and kept at the lowest value for the remainder of the experi-
ment, while monitoring the subsequent recovery in the thixotropy parameter.
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parameters, this yields A ~ 0.9 at the end of the ramp down
phase [when BMy(t) = ﬁnhixj/f = 0.1], consistent with the
results shown in Fig. 3.

Knowing the temporal evolution in the thixotropy parame-
ter A(My, t), one can subsequently compute the expected rhe-
ological hysteresis by looking at the evolution in the flow
curves for the three different subclasses of thixotropic fluid
model (TV, TP, and TVP) summarized above. In Fig. 5, we
show the shear stress response of these different models for
the same set of ramp-down/ramp-up protocols used for com-
puting the thixotropy parameter presented in Fig. 4. The inset
figures show the value of the hysteresis area, A (fexp) as the
total time of the experiment changes for three different
values of # = 0.01, 0.1, and 1. First, it is clear that all three
models robustly predict nonmonotonic hysteretic curves with
clear maxima in their distribution of A(,(texp). This clearly
demonstrates that the hysteresis observed in the thixotropy
parameter itself is sufficient to lead to rheological hysteresis.
For instance, one does not need to necessarily have a yield
stress fluid to observe rheological hysteresis (and indeed some
complex foodstuffs such as Marmite appear to be thixoviscous
in nature [50]). However, a closer look shows that the precise
form of the constitutive model can substantially change the
quantitative characteristics of the Ac(texp) distributions.

For a given value of f (here taken to be § = 0.1), we can
compare and contrast the hysteresis areas measured from the
flow curves for the three different fluids above, as shown in
Fig. 6. First it should be noted that, for all three different
fluid models considered, the value of the thixotropic time
scale in these calculations (held constant here at 7y,ix = 105)
differs from the characteristic value of #., at which the local
maximum in the distribution curve of the hysteresis area is
observed. This is to be expected because (i) the value of
clearly influences the location of the hysteresis maximum
as evident in the inset figures shown in Fig. 5, (ii) for the
TV and TVP fluid models, the value of the plastic viscosity
can change the exact location of the hysteresis maximum.
We also note that in the original step-wise flow protocol
described by Divoux et al. [25] (and later adapted by
[34,36]), the time scale presented on the ordinate axis is
the time spent at each shear rate (8f), as opposed to the
total time of the experiment (f.x, = ndét) in our proposed
flow protocol. Additionally, one should note that by defin-
ing the hysteresis area as given in Eq. (2), the magnitude of
the shear stress enters the expression, resulting in larger
weighted contributions to the total hysteresis area when
thixotropic effects are more pronounced at high shear rates.

If instead computation of the hysteresis area was based
(for example) on log(c) as A, = jyyf |A log o(p)|d log 7, this
would shift the location of the maxima in the distribution
toward shorter times. For completeness, we show such a plot
in the supplementary material [55].

A close inspection of the results for the TP and TV fluid
models shows that although the choice of parameters can
increase/decrease the total hysteresis area, and the precise
value of the experimental time scale at which the maximal
hysteresis observed, in general a rather simple distribution
with a clear single maximum is measured for each model.
This is in agreement with measurements in a range of different
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FIG. 5. [(a), (c), and (d)] Expected evolution in the measured shear stress vs applied shear rate, under the ramp-down/ramp-up flow protocol shown schemati-
cally in the top row of Fig. 3. Three different types of thixotropic fluid model are considered: [(a) and (b)] TV, (c) TP, and (d) TVP, with constitutive equations
for each model shown in the figure, and the results are evaluated numerically using the time-dependent solution for the thixotropy parameter presented in
Fig. 4. For clarity in (b), the viscosity of the purely TV fluid is also presented as a function of shear rate, resulting in identical hysteresis loops to those shown
in Fig. 3 (due to the linear dependency of the total viscosity on the evolving thixotropy parameter). The color increments from blue to red (see color version
online, and indicated in print by the direction of the arrow) in each figure represent longer total times of experiments, f..,, corresponding to different Mu
numbers in the range Mu = 1073—10°. The total hysteresis areas Ao(texp) computed using the expression in Eq. (2) are calculated for different experiment
times, and different values of the parameter §, and are presented as inset figures for each constitutive model. The solid lines present the initial ramp-down flow,
and the dashed lines represent the ramp-up flow protocols for the same experimental durations.

yield stress materials [25] and also with DPD computations
[35]. In contrast, the results for the TVP fluid model show a
more complex bimodal distribution with distinct contributions
from both the viscous and the plastic contributions to the total
stress. Other more sophisticated models such as those pro-
posed by Geri et al. [45], Larson [10,26], and a population
balance model proposed by Mwasame et al. [51], in which
different microscopic physical processes (with different charac-
teristic time scales) give rise to different contributions to the
total stress will also predict a similar multimodal response.
Because of this difficulty in directly recovering the
precise numerical value of the thixotropic time scale (which
in the three models considered here is of course known a
priori) from hysteresis area measurements, we propose aug-
menting the ramp-down/ramp-up protocol with one simple
final additional step; i.e., a sudden cessation or “quench” of

the system from an initially letherized state [corresponding to
a long time of shearing at a high shear rate y; (i.e., Mu>1
and My>1)] to the lowest possible final experimentally
resolvable (nonzero) shear rate (y,), and directly monitoring
the recovery in the shear stress as the microstructure rebuilds.
We perform this stress jump experiment numerically with a
very short ramp down protocol (corresponding to fexp, = 0.1's)
followed by 100 s of steady shear flow at a constant shear rate
of 7, =0.1 s~!. Results of such a quench/recovery protocol
are presented as the hollow black solid circles in Fig. 4
[holding the shear rate at a constant low (but nonzero) value
results in evolution of the thixotropy parameter in a vertical
fashion along the ordinate axis when results are plotted vs the
applied shear rate]. The same results are presented against
time in Fig. 7 and show a smooth monotonic recovery in the
structure and, thus, in the shear stress of the material as well.
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FIG. 6. Total rheological hysteresis computed for the three different types
of inelastic thixotropic fluid models, all with the same constant values of
f = 0.1 and 74ix = 10s in Eq. (2).

Equation (2) can also be solved analytically using an integrat-
ing factor when the shear history y(¢) is specified. For the
simplest case, when a constant shear rate of strength y, is
applied, this results in the following expression:

1
1+ By Tix
1
1+ By Tunix

A7) =

_ /10 e_(l+ﬁj/f Tthix )/ Tthix (4)

where ¢ indicates the nonzero (but typically negligibly
small) residual value of the thixotropy parameter in the fully
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FIG. 7. The evolution of the thixotropy parameter, A, with total elapsed
time of experiment for a very rapid quench/recovery (i.e., a stress jump-
down experiment). The hollow circles represent the numerical solution of
Eq. (2) and the solid line represents the analytical solution given in Eq. (3).
The hollow star indicates the intersection of the asymptotic value of
Ayy, t — ) = U[1 + By;Tmix] (blue dashed line) and the Taylor series
expansion of Eq. (3) (blue dotted line). Provided My, <1 this gives a
good direct estimate of the thixotropic time scale, as shown by the blue
dashed line.
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letherized state at My; > 1. The expression in Eq. (4) is
shown in Fig. 7 by the solid lines. The asymptotic value of 4
at long times depends on the parameter S (as evident from the
figure) and is given by A(y;, t — ) = 1/(1 + By, Tuix) = 1/
(1 + BMyy). The blue dotted line represents the Taylor series
expansion series of Eq. (3) at short times. Solving for the
intersection point of the Taylor series expansion at short time
and the asymptotic value of A at long time gives the following
expression:

Tthix
1+ BMy;”

P

S

which provides a very easy method for recovering the thixo-
tropic time scale 7yx (as indicated by the hollow star shown
in Fig. 7).

V. DISCUSSION AND CONCLUSIONS

In this article, we have proposed a framework and lan-
guage for quantifying the magnitude of thixotropic effects in
complex fluids under steady and time-varying shear flows.
We believe the definition and reporting of a Mnemosyne
number, My = tyixy (to quantify the relative magnitude
of thixotropic effects), as well as a mutation number
Mu = texp/Tihix (to report the duration of a particular test pro-
tocol or flow process) will help rheologists unravel and
understand the complexities of thixotropic effects in complex
fluids. We have outlined several possible rheometric test pro-
tocols that enable the thixotropic time scale and the magni-
tude of the rheological hysteresis in a given material to be
quantified in a convenient manner for experimentalists and
theoreticians alike. The ramp-down/ramp-up protocol corre-
sponds to a series of up/down vertical trajectories through the
Mu—My state space sketched in Fig. 1. There are, of course,
many other putative test protocols that can be proposed to
explore this space (for example, exponential ramps down/up
[35], or a staircase series of constant rates that are stepped
down/up [25]) and the optimal protocol may be expected to
vary for diverse systems ranging from consumer products to
foods comprised of structured pastes or jammed emulsions.
However, all such protocols can be represented in the Mu—My
state space, and the fully “shear-melted” or destructured mate-
rial state—in which memories of all previous deformation
histories are eliminated—is always clearly represented by
the fully letherized state located in the upper right of this
diagram. Finally, we note that for more complex TEVP
material systems (e.g., many colloidal gels) which show
rheological aging, and/or pronounced viscoelastic effects,
this two-dimensional state space must also be augmented
with additional dimensions (capturing the material age and
the viscoelastic relaxation time, respectively).

The thermal analogy hinted at by the term “shear-melting” is
a useful one to investigate further in the future. When converted
to a proper frame-invariant form (i.e., by replacing the ordi-
nary time derivative with a material derivative, DA/Dr), the
evolution equations considered here for the scalar order
parameter A(f) resemble transport equations for other passive
scalars such as a (suitably nondimensionalized) temperature
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field, 6(r). Many of the tools and analyses developed for
quantifying thermal entrance lengths and describing the evo-
lution of thermal boundary layers may thus be adapted to
future studies of thixotropic flows in more complex geome-
tries. As a specific example, the pressure-driven flow of an
initially fully restructured material (i.e., a material with A = 1)
from a tank or reservoir into a narrow slit or pipe is closely
analogous to the entrance flow of a cold fluid into a hot-
walled tube or (even more closely) to a viscous heating
problem such as that studied by Dinh and Armstrong [52]. In
this latter problem, the high shear rates experienced by the
fluid elements near the wall locally increase the temperature
of the fluid (or, equivalently, in the case of a thixotropic fluid,
locally destructures the material). In each case, the question
of interest is what is the steady-state spatial distribution of the
temperature field across the channel 7(x,y) or equivalently the
level of structure A(x, y) in a thixotropic material that is sensi-
tive to its entire shear history. Material elements moving
along different streamlines experience different mutation
numbers and Mnemosyne numbers and, therefore, different
levels of sensitivity to the effects of thixotropy. One important
distinction between the thermal problem and the naivest
thixotropic transport equation, such as Eq. (3), is the absence
of a diffusive term (of the form V21) that is necessary to
establish a balance between convection in the flow direction
and diffusion normal to the bounding walls. The important
role of such nonlocal terms has been considered, in the
context of thixotropy and hysteresis loops specifically, by
Radhakrishnan et al. [34] for example.

In this Perspective, we have only analyzed simple models
in which a single thixotropic time scale is relevant, while in
virtually all real thixotropic systems, a spectrum of time
scales is present, as shown in the recent work of Sen and
Ewoldt [53], which can be described through a series of 4;
which all undergo evolution in time [26]. For systems in
which distinct time scales are measurable, different Mu
numbers can be defined to emphasize the range of time
scales involved for the corresponding underlying microstruc-
tural elements. For example, it is certainly possible for any of
the simple structural models that we use to illustrate our
ideas to define two different Mnemosyne numbers depending
on whether we base it on the restructuring time scale (Typix)
or the breakdown time scale which we write as Sy, but
other authors may just write as two rate constants, k; and &,
[which typically have different physical units, depending on
the precise functional form of the breakdown term in
Eq. (3)], respectively. Here, we argue that a natural way of
measuring ik 1S through measurements of the shear stress
recovery following a quench experiment from a high shear
rate flow to a low (but nonzero) shear rate, and it is thus
most appropriate to base the definition of My on this restruc-
turing time scale; however, a second Mnemosyne number
can then be clearly written as the product of two dimension-
less groups B.My. This is completely analogous to the way
polymer rheologists define Weissenberg numbers based on
either the Rouse or the reptation time scale, but then inter-
relate them by noting that Wirouse = Wiiep/3Z, where Z is the
number of entanglements. In reptation theories, the dimen-
sionless parameter Z represents a dimensionless ratio of the

1037

tube orientation time scale to the chain stretching time scale.
Equivalently, in thixotropy models, the dimensionless param-
eter S represents a ratio of the structure break-down to
restructuring time scales. Whichever choice of a mean/
average structural time scale is preferred in a specific
problem, a Mnemosyne number can always be clearly
defined and used to construct Mu—My maps for exploring
and understanding the complex time-dependent response of
thixotropic material systems.

Agarwal et al. [13] have recently argued for other shearing
protocols (such as step strains imposed after cessation of pre-
shearing with different waiting times, f,,) that can distinguish
between rheological aging and nonlinear viscoelasticity, and
it will be interesting to represent the resulting material hyster-
esis in plots of the type we show in Figs. 5 and 6 where the
appropriate mutation number now becomes Mu = t,,/Tyix..
Stadler et al. [54] have also recently proposed a series of
interval experiments for thixotropic characterization of emul-
sions and colloidal systems. Thixotropy will again corre-
spond to nonmonotonic measures of hysteresis at time scales
that are generally much longer than similar measurements
originating from nonlinear viscoelastic effects.

Finally, it should be emphasized that it is only for didactic
simplicity that we focused here exclusively on inelastic
models. This enables us to illustrate our key conceptual ideas
using the most elementary constitutive models possible. As
noted in Sec. I, in most real-world systems (such as consumer
products, paints, inks, and foodstuffs) at least some level of
material viscoelasticity is also present [as detectable, for
example, by non-zero values of G'(w)—which of course are
identically zero for the models we consider] and more realistic
constitutive models must account for both viscoelastic and
thixotropic time scales/constituents. This inevitably leads to
more material parameters, as well as the need to represent the
dynamical response of the system in a higher-dimensional
space; this can readily be done and in the future may be repre-
sented unambiguously in terms of a Weissenberg number plus
a mutation number and a Mnemosyne number.
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