
Gaborheometry: Applications of the discrete Gabor transform for time resolved
oscillatory rheometry
Joshua David John Rathinaraj and Gareth H. McKinley

Citation: Journal of Rheology 67, 479 (2023); doi: 10.1122/8.0000549
View online: https://doi.org/10.1122/8.0000549
View Table of Contents: https://sor.scitation.org/toc/jor/67/2
Published by the The Society of Rheology

ARTICLES YOU MAY BE INTERESTED IN

On the nature of flow curve and categorization of thixotropic yield stress materials
Journal of Rheology 67, 461 (2023); https://doi.org/10.1122/8.0000558

Understanding the transient large amplitude oscillatory shear behavior of yield stress fluids
Journal of Rheology 67, 331 (2023); https://doi.org/10.1122/8.0000583

On Oreology, the fracture and flow of “milk's favorite cookie®”
Physics of Fluids 34, 043107 (2022); https://doi.org/10.1063/5.0085362

The Mnemosyne number and the rheology of remembrance
Journal of Rheology 66, 1027 (2022); https://doi.org/10.1122/8.0000432

Imaging of the microstructure of Carbopol dispersions and correlation with their macroelasticity: A micro- and
macrorheological study
Journal of Rheology 66, 749 (2022); https://doi.org/10.1122/8.0000452

Distinguishing thixotropy from viscoelasticity
Journal of Rheology 65, 663 (2021); https://doi.org/10.1122/8.0000262

https://images.scitation.org/redirect.spark?MID=176720&plid=1995581&setID=376382&channelID=0&CID=731494&banID=520909656&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=8b530cde05b298ac4e640a99b121abdcf09b13de&location=
https://sor.scitation.org/author/John+Rathinaraj%2C+Joshua+David
https://sor.scitation.org/author/McKinley%2C+Gareth+H
/loi/jor
https://doi.org/10.1122/8.0000549
https://sor.scitation.org/toc/jor/67/2
https://sor.scitation.org/publisher/
https://sor.scitation.org/doi/10.1122/8.0000558
https://doi.org/10.1122/8.0000558
https://sor.scitation.org/doi/10.1122/8.0000583
https://doi.org/10.1122/8.0000583
https://sor.scitation.org/doi/10.1063/5.0085362
https://doi.org/10.1063/5.0085362
https://sor.scitation.org/doi/10.1122/8.0000432
https://doi.org/10.1122/8.0000432
https://sor.scitation.org/doi/10.1122/8.0000452
https://sor.scitation.org/doi/10.1122/8.0000452
https://doi.org/10.1122/8.0000452
https://sor.scitation.org/doi/10.1122/8.0000262
https://doi.org/10.1122/8.0000262


Gaborheometry: Applications of the discrete Gabor transform for time resolved
oscillatory rheometry

Joshua David John Rathinaraja) and Gareth H. McKinleyb)

Hatsopoulos Microfluids Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139

(Received 13 August 2022; final revision received 18 November 2022; published 3 February 2023)

Abstract

Oscillatory rheometric techniques such as small amplitude oscillatory shear (SAOS) and, more recently, medium amplitude oscillatory shear
and large amplitude oscillatory shear (LAOS) are widely used for rheological characterization of the viscoelastic properties of complex fluids.
However, in a time-evolving or mutating material, the build-up or breakdown of microstructure is commonly both time- and shear-rate (or
shear-stress) dependent, and thixotropic phenomena are observed in many complex fluids including drilling fluids, biopolymer gels, and
many food products. Conventional applications of Fourier transforms for analyzing oscillatory data assume the signals are time-translation
invariant, which constrains the mutation number of the material to be extremely small. This constraint makes it difficult to accurately study
shear-induced microstructural changes in thixotropic and gelling materials, and it is becoming increasingly important to develop more
advanced signal processing techniques capable of robustly extracting time-resolved frequency information from oscillatory data. In this work,
we explore applications of the Gabor transform (a short-time Fourier transform combined with a Gaussian window), for providing optimal
joint time-frequency resolution of a mutating material’s viscoelastic properties. First, we show using simple analytic models and measure-
ments on a bentonite clay that the Gabor transform enables us to accurately measure rapid changes in both the storage and/or loss modulus
with time as well as extract a characteristic thixotropic/aging time scale for the material. Second, using the Gabor transform we demonstrate
the extraction of useful viscoelastic data from the initial transient response following the inception of oscillatory flow. Finally, we consider
extension of the Gabor transform to nonlinear oscillatory deformations using an amplitude-modulated input strain signal, in order to track the
evolution of the Fourier–Tschebyshev coefficients of thixotropic fluids at a specified deformation frequency. We refer to the resulting test pro-
tocol as Gaborheometry (Gabor-transformed oscillatory shear rheometry). This unconventional, but easily implemented, rheometric approach
facilitates both SAOS and LAOS studies of time-evolving materials, reducing the number of required experiments and the data postprocessing
time significantly. © 2023 The Society of Rheology. https://doi.org/10.1122/8.0000549

I. INTRODUCTION

There have been significant advances in the field of signal
processing in the last 50 years whose utilization spans a
variety of engineering and research applications including
acoustics, image processing, astronomy, data transmission,
speech recognition, as well as medical imaging such as CAT
scans and MRI [1–7]. These advanced signal processing
techniques have, until recently, been under-utilized in the
field of rheometry and soft matter. However, in recent years,
there has been a significant trend in developing signal pro-
cessing techniques relevant to soft material characterization
such as large amplitude oscillatory shear (LAOS) [8–16],
medium amplitude oscillatory shear (MAOS) [17,18], the
sequence of physical processes (SPPs) [19,20] framework,
and medium amplitude parallel superposition (MAPS)
[21,22]. These techniques help in quantifying the viscoelastic
material properties and physically meaningful information of
an unknown material, which paves the way for understanding
the flow behavior of the material at different stresses or strain
states. For viscoelastic materials, the resulting rheological

measures are a function of the frequency and strain amplitude
of the material deformation and facilitate detailed characteri-
zation of materials for a range of applications in consumer
industries, automotive sectors, and the oil and gas industries
[23,24]. However, the signal processing algorithms used to
analyze these oscillatory techniques, including conventional
small amplitude oscillatory shear (SAOS), most commonly
utilize the discrete Fourier transform (DFT), which does not
intrinsically provide any time resolution by itself. This makes
it difficult to characterize mutating materials, which are both
time and shear-rate or shear-stress dependent.

There are numerous microstructural mechanisms that are
responsible for the time-evolving or “mutating” nature of vis-
coelastic properties in complex fluids. For example, in metal-
ion crosslinked polymers, the metal-ion coordinate bonds can
be reversible [25,26]. This results in the build-up or recovery
of structural features over time when breakdown of the
microstructure is initiated by large deformations at high shear
rates or stresses. Shear-induced microstructural build-up and
breakdown (not necessarily by reversible covalent bonds)
over time is reflected in terms of the dependence of visco-
elastic properties not just on the imposed test frequency but
also on the elapsed time or waiting time since the system was
prepared or loaded into the measurement device. This phe-
nomenon is common in many complex fluids, and such
systems (which do not satisfy time translation invariance) are
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widely characterized or collectively referred to as thixotropic
materials [27–30]. In soft glassy materials, there is no need for
a preceeding shear or large deformations to induce structural
build-up. These materials are out of thermodynamic equilib-
rium and show time-dependent slowing down of their relaxa-
tion dynamics with age [31–37]. The thermally driven
mobility of the microscopic constituents induces slow inexora-
ble structural evolution with time, resulting in formation of
progressively more stable structures that reduce the overall free
energy of the system. This process of structural evolution with
time observed in soft glassy materials is also known as physi-
cal aging [38–44]. In the process of physical aging, the elastic
modulus and relaxation time characterizing the material visco-
elasticity typically increase monotonically with waiting time.

To quantify the rate of evolution in such mutating materi-
als, Winter et al. [45] introduced a dimensionless number
called the mutation number MuG as a measure to characterize
the rate of change in the relevant property of the system
within the given experimental time. Here, G indicates the
generic property of interest and Mu is defined as the ratio
between the mutation time λMu and the experimental time Δt
required to measure the material property of interest [45].
The mutation time λMu is defined as the characteristic time
constant for the change of material,

λMu ¼ G

dG=dt
¼ d lnG

dt

����
����
�1

: (1)

The relevant experimental time Δtexp for an oscillatory shear
experiment which takes a single cycle to complete is Δtexp
¼ 2π=ω. Therefore, the mutation number can be written as

MuG ¼ Δtexp
λMu

¼ 2π
ω

d lnG
dt

����
����: (2)

Winter and Mours show that in order to obtain accurate mea-
surements, the property G should not change significantly
within the duration of the experiment and careful experimen-
tal tests suggest the criterion MuG � 0:15 [46].

In Fig. 1, we reproduce data from [47] which shows the
time-dependent evolution of the elastic modulus of several
representative soft, physically aging materials. The three mate-
rials shown in Fig. 1 are an unspecified gel, a food suspension
(mustard), and a bentonite clay, which is commonly used in
the drilling industry. It is clear that the bentonite sample has
the highest mutation number among the three systems.
Satisfying the criterion MuG � 0:15 can be challenging for
such rapidly mutating systems. The time dependency of the
material properties can be observed in the steady flow curves
as well, as indicated by the “thixotropic loop” test protocol
shown in Fig. 2. Each flow curve can be well described by
the Herschel–Bulkley model σ ¼ σy þ k _γn but a systematic
increase of the yield stress σy(t) is observed with the elapsed
measuring time. Such thixotropic or hysteretic characteristics
are also reflected in small amplitude oscillatory measurements
which are used to measure the frequency-dependent complex
modulus of the material [48]. Exploring the temporal evolu-
tion of the viscoelastic properties of mutating materials pro-
vides deeper insight into the rheological behavior and
characteristics of thixotropic viscoelastic systems. For such
mutating materials, Geri et al. introduced the optimally win-
dowed chirp (OWCh) protocol which makes use of a fre-
quency modulated exponential chirp signal in conjunction
with a Tukey window. The resulting signal waveform can
supplant standard SAOS techniques to enable rapid determi-
nation of the frequency response of viscoelastic materials in
the linear regime [49,50]. This technique reduces the experi-
mental time Δtexp required to perform a frequency sweep and
results in a substantial reduction in the mutation number
MuG. This protocol has been used with a range of time-
evolving systems to obtain the frequency response

FIG. 1. Time-dependent evolution of the elastic modulus for various thixo-
tropic mutating materials. Reproduced with permission from Coussot et al.,
J. Rheol. 50, 975–994 (2006). Copyright 2006, AIP Publishing LLC. Here,
tw represents the elapsed or waiting time (after the initial preshear) at which
the small amplitude oscillatory deformation is imposed to obtain the reported
moduli data. The steeper slope for the bentonite data indicates a higher muta-
tion number MuG than the samples labeled gel and mustard.

FIG. 2. Time dependent evolution in the steady shear viscosity and shear
stress for a 5% bentonite dispersion in de-ionized water. Blue color indicates
the data for which the shear rate is increased from _γ ¼ 0:1 to 100 s�1 in five
equally exponentially spaced steps per decade. Red color indicates the data
for which the shear rate is decreased from _γ ¼ 100 to 0.1 s�1. The total
elapsed time of sweep in one direction is 1800 s.

480 J. D. JOHN RATHINARAJ AND G. H. MCKINLEY



characteristics of a material at a given instant of time for a
range of frequencies [51–53]. There have also been develop-
ments on evaluating the linear viscoelastic complex modulus
from the full information obtained rheometrically in step
strain experiments, and this can again reduce the experimental
test time Δtexp and, thus, the mutation number MuG [54].
However, for rapidly mutating materials, even the usage of
the OWCh techniques can be challenging since it can be diffi-
cult to satisfy the criteria MuG � 0:15 [55].

A desirable feature of any new advanced signal processing
technique would be to enable both time and frequency resolu-
tion of rapidly mutating materials, which are of high interest
to various industrial and biomedical applications. To this end,
we consider here the Gabor transform for analysis of rheomet-
ric data. This is a special case of the short time fourier trans-
form (STFT) and enables determination (within constraints
discussed later) of both the time and frequency content of a
signal from oscillatory experiments. The Gabor transform uses
a temporally localized Gaussian function as a window in con-
junction with a Fourier transform to provide both time and fre-
quency resolution. The use of a Gaussian windowing function
helps facilitate derivation of analytical results on the errors
incurred and helps us to understand the details of the process
theoretically. The Gaussian window has been proven to have
the minimum time-frequency uncertainty [56,57] of available
window functions providing a strong case to use this special
case of the STFT for rheometric applications.

We start by briefly reviewing the DFT and its limitations.
Then, we introduce the Gabor transform and the computa-
tional details required, such as selection of window length
and amplitude correction, to enable its use for quantitative
rheometry. We first demonstrate use of the Gabor transform
to resolve the time-dependent complex modulus in a simple
aging Kelvin– Voigt model and then proceed to use the

algorithm developed to extract the time-dependent complex
modulus of an aging 5 wt. % bentonite dispersion. We also
discuss in detail two other applications of the Gabor transform
in rheometry: (i) extracting the long time steady-state fre-
quency response (also known as the alternance state) as well
as the transient response accurately from the initial oscillatory
data recorded following the inception of oscillatory shear. This
helps us to extract quantitative data from short duration experi-
ments and reduces the need to wait long periods for the initial
viscoelastic transient response to subside; (ii) accurately
extracting and monitoring the evolution of the nonlinear
Fourier–Tschebyshev coefficients in LAOS with increasing
strain (or stress) amplitude at a specified deformation fre-
quency using an amplitude-modulated (AM) signal. This latter
application streamlines the implementation of LAOS tests by
reducing the number of experiments required and the data
postprocessing times that are required to obtain the nonlinear
Fourier–Tschebyshev coefficients characterizing viscous and
elastic nonlinearities. We refer to the use of the discrete Gabor
transform for rheometric applications as Gaborheometry.
Finally, we discuss the importance of Heisenberg’s time-
frequency uncertainty principle [58,59] in implementing the
Gabor transform, which provides guidance in optimizing the
trade-off between selecting time and frequency resolution and
its importance in designing convenient and robust experimen-
tal protocols for Gaborheometry.

II. THE DISCRETE FOURIER TRANSFORM IN
RHEOMETRY

A. Introduction to the DFT

The complex modulus of a linear viscoelastic material can
be defined for a periodic small amplitude oscillatory shearing
deformation by

G*(ω) ¼ G0(ω)þ iG00(ω) ¼ ~σ(ω)
~γ(ω)

, (3)

where ~σ(ω) is the Fourier transform (FT) of the stress signal
and ~γ(ω) is the Fourier transform of the strain signal [60]. The
real part of the complex modulus is the storage modulus, and
the imaginary part is termed the loss modulus. In practice, the
Fourier transform operation is computed using the DFT algo-
rithm. The key parameters for a time and frequency-varying
signal are shown systematically in Fig. 3. The discrete Fourier
transform of a digitally sampled time series x(t) (with N
samples) considers the entire record length and is defined as

~xDFT(ωk) ¼
XN�1

n¼0

x(tn)e
�iωk tn k ¼ 0, 1, 2, . . . , N � 1 (4)

where x(tn) is the input signal amplitude at each time tn, N is
the total number of points present in the digital signal or the
number of time samples, dt is the time sampling interval, and
tn ¼ n � dt is the time value of the nth sampling instant. The
total duration of the signal is T ¼ (N � 1)dt. The output con-
sists of complex information samples at discrete frequencies
ωk between ω ¼ 0 and ω ¼ 2π=dt. The complex value of

FIG. 3. A typical digital signal from a rheometer is composed of N total
points with a time interval dt. x(tn) corresponds to the sampled digital signal
at x(n � dt) where n [ 0, 1, 2, . . . , N � 1.
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~xDFT(ωk), which is the DFT at frequency ω ¼ ωk, is a
measure of the amplitude and phase of the information
present in the input signal xðtÞ at that frequency where
ωk ¼ 2πk=(N � dt) [61]. However, the second half of the
vector in frequency the domain does not contain new infor-
mation (n [ N=2, . . . , N � 1). Therefore, only N=2 (plus a
DC term) frequency samples with unique (complex) informa-
tion are obtained in the frequency domain from N discrete
time samples. These different parameters are depicted sche-
matically in Fig. 3.

B. Limitations of DFT: No time resolution and
assumption of time translation invariance (TTI)

Computation of the discrete Fourier transform at a fre-
quency ωk considers the entire sampled time signal x(tn)
(n ¼ 0, 1, . . . , N � 1) in order to calculate the amplitudes of
the different frequency components present in the time
signal. Time-resolved frequency information at an arbitrary
time tn is not obtainable from Eq. (4) using a discrete Fourier
transform. To illustrate this, in Fig. 4, we show a time signal
comprised of two distinct frequencies. The signal is con-
structed by the following stepwise change in frequency:

x(t) ¼ sin(1t), t , 20π s,
sin(5t), t � 20π s:

�
(5)

The discrete Fourier transform of the resulting signal con-
structed from Eq. (5) is also shown in Fig. 4. As expected, the
Fourier transform correctly gives information about the two
different frequencies (1 and 5 rad/s) present in the time signal;
however, time-resolved frequency information for locating
when the peaks at ω ¼ 1 rad/s and ω ¼ 5 rad/s are present in
the original signal is not clearly indicated. The small ampli-
tude oscillations seen in Fig. 4 are known as Fresnel ripples
and indicate that the signal is not infinitely periodic. They

represent the step discontinuity of the discrete frequency com-
ponents in the signal. However, reconstructing the fact that the
discontinuity occurred at a time ti ¼ 20π is not evident.

The second limitation of the discrete Fourier transform is
the assumption of TTI in the harmonic content of the signal.
To illustrate this limitation, we construct a sinusoidal signal
with a strictly increasing amplitude

x(t) ¼ 0:1t sin(ωit), (6)

where ωi ¼ 1 rad/s. The resulting time signal is shown in
Fig. 5(a) by the orange solid line and the discrete Fourier
transform of Eq. (6) is plotted in Fig. 5(b). The correspond-
ing time invariant sinusoid with amplitude of 0:1T=2
(T being the duration of the time signal) and fixed frequency
of ωi is shown in Fig. 5(a) by the blue curve. In contrast to
the DFT of a time-invariant sinusoid, the DFT of the time
signal in Eq. (6) is nonzero even at frequencies ω = ωi,

FIG. 4. A discrete Fourier transform (DFT) (N ¼ 10 240, Ndt ¼ 40π s)
showing the frequency content of the signal constructed according to
Eq. (5). In the inset, we show the original time series. The ripples observed
in the frequency spectrum around the two primary peaks (located at ω ¼ 1
and ω ¼ 5 rad/s) arise because of the sharp discontinuity and finite periodic-
ity of each part of the composite time signal.

FIG. 5. (a) The orange solid line represents a sinusoidal signal whose ampli-
tude increases linearly with time according to Eq. (6). The blue solid line
represents the signal reconstructed just from the peak value of the frequency
spectrum of Eq. (6). The total number of points N ¼ 20 480 and the duration
of the time signal is Ndt ¼ 40π s. (b) The plot shows the frequency spectrum
of the time signal in Eq. (6). The nonzero contributions observed in the inset
figure distinct from the peak frequency ω ¼ 1 rad/s are due to the time
varying amplitude of the input sinusoidal signal x(t) ¼ 0:1t sin(t).
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where ωi ¼ 1 rad/s for our example. This can be more clearly
visualized by using a logarithmic scaling, as shown in the
inset of Fig. 5(b). The peak value of the discrete transform at
~x(ω ¼ ωi) in Fig. 5(b) equals the value of the DFT at ω ¼ ωi

of the time-invariant sinusoidal signal with a frequency of ωi

and amplitude of 0.1T/2. For thixotropic and aging materials,
in which the output signal corresponds to the measured stress
response to a constant amplitude sinusoidal strain input, using
just the numerical value of the DFT peak located at the fre-
quency of input signal in order to calculate the material prop-
erty will result in an estimate of the mean value of G* over the
entire duration of the experiment but does not provide us with
the dependence of the complex moduli on time.

C. Piece-wise analysis

The most common technique employed for thixotropic
and aging materials in which the modulus is both time- and
frequency-varying is a piece-wise analysis. The output signal
is broken into a number of discrete consecutive segments.
Each piece-wise signal corresponds to a particular age time
and is processed separately by discrete Fourier transform to
monitor the time-dependency of the viscoelastic properties of
aging and thixotropic materials. For rapidly mutating materi-
als, this piece-wise decomposition makes it difficult to obtain
accurate results [45].

As we have attempted to show from these illustrative
examples, it is important to develop more advanced signal
processing techniques which can accommodate time- and
frequency-varying inputs that do not require time translation
invariance in order to extract information about temporal var-
iations in the complex modulus G*(ω, t) for thixotropic and
aging materials. Recognizing the advancements in other mul-
tifrequency data-rich rheometric techniques such as OWCh
and MAPS, we now seek a time-resolved protocol which can
capture and separate both time and frequency information for
mutating soft material samples.

III. GABOR TRANSFORM

A. Introduction to the Gabor transform

The STFT is used to obtain both time and frequency reso-
lution of a time-varying input signal. In a STFT, the temporal
signal x(t) is first multiplied by a window function w(t � τ)
and then a Fourier transform is taken [62],

~x(τ, ω) ¼
ð1
�1

x(t)w(t � τ)e�iωtdt: (7)

Here, τ and ω are the time and frequency of interest. The
window function w(t � τ) localizes the time information pro-
vided by the STFT.

The Gabor transform is a special case of the STFT in
which the window function is given by a Gaussian function
[56]. The Gaussian function g(t � τ) is multiplied into the
signal x(t) and then the Fourier transform is computed to
provide both time (τ) and frequency (ω) resolution. The
Gabor transform can thus be written as

~x(τ, ω) ¼
ð1
�1

x(t)g(t � τ)e�iωtdt, (8)

where the Gaussian window function is given by

g(t � τ) ¼ Ae�(t�τ)2=2a2 : (9)

Here, A can be used as a scaling factor and in practice is
often set comparable to the amplitude of the signal of interest
and there is no strict necessity for the scaling factor A. The
parameter a, sets the window width as shown in Fig. 6.
Although the limits in Eq. (8) extend to +1, in practice, the
parameter a controls the width of the signal that is analyzed.
We consider 4a to be the window length of the Gaussian
window, because at this point g(t � τ) has decreased to e�2

on each side of the time τ. As a ! 1, the conventional
Fourier transform is recovered and there is no windowing or
modification to the original time signal x(t). As a decreases,
the window becomes progressively narrower so that temporal
localization improves.

For real discrete time signals such as the digitized strain
or stress signals received from the A/D converter of a rheom-
eter, a discrete Fourier transform of the product of the incom-
ing time signal with the discretized Gaussian window is
taken, as represented in Eq. (4) instead of a Fourier transform
involving integrals.

B. Amplitude correction due to windowing

Although the Gabor transformation provides effective
time localization, because of the summation present in
Eq. (4), the window function reduces the amplitude of the
Fourier-transformed variable ~x(τ, ω). In rheometry, we need
precise values of the amplitude in order to correctly compute
quantities such as the dynamic modulus so this amplitude
reduction needs to be systematically corrected. To illustrate
this, we again consider a sinusoidal signal x(t) ¼ sin(ωitn)
with the number of discrete points fixed at N ¼ 2048, a total

FIG. 6. The variation in a normalized Gaussian window g(t � τ)=g(0) given
by Eq. (9). The parameter a of this Gaussian function controls the window
width. The normalized value of the window at t � τ ¼ a is g(a)=g(0) ¼ 0:61
and at t � τ ¼ 2a has decreased to g(2a)=g(0) ¼ 0:13.
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duration of the signal T ¼ 40π and ωi ¼ 1 rad/s. A Gaussian
window with a ¼ 20 s located at τ ¼ 20π s is considered.
The windowed signal, which is the product of the time signal
x(t) and the Gaussian window g(t � 20π), is shown in
Fig. 7(a). The calculated amplitude spectrum from the
discrete Fourier transform of the windowed signal is different
from the amplitude spectra of the discrete time signal
x(tn) ¼ sin(ωitn) evaluated without any windowing. This is
shown by the difference between the blue dotted line which
corresponds to the amplitude spectrum of the windowed
signal and the red broken line which corresponds to the
amplitude spectrum of the raw time signal x(tn) ¼ sin(ωitn)
without any windowing in Fig. 7(b). Thus, in order to deter-
mine the correct value of the complex modulus from a dis-
crete Gabor transform which includes windowing, we must
use an amplitude correction factor Aw [63] given by

Aw ¼ NPn¼N�1
n¼0 g(tn)

, (10)

where N is the total number of points in the discrete time
signal, tn ¼ n � dt as defined in Sec. II A, and g(tn) is the
value of the Gabor window function at time tn. Using this
correction factor, we can now write the relationship between
the discrete Fourier transform and the discrete Gabor trans-
form at the frequency of interest (ωi) as

~xDFT(ω ¼ ωi) ¼ ~xSTFT(ω ¼ ωi) � Aw: (11)

The black solid line in Fig. 7(b) shows the amplitude
spectrum of the discrete Gabor transform after correction.
The peak value now coincides with the peak value of the
DFT of the original unwindowed time signal. By using this
procedure, the discrete Gabor transform (or any other win-
dowed STFT) can be easily employed to obtain the correct
value of the complex moduli from the output stress or strain
signal at the specified frequency of interest.

C. Estimation of optimal window length

Careful inspection of Fig. 7(b) shows that although
Eq. (11) enabled us to correct the amplitude of the trans-
formed signal, the windowing algorithm also has broadened
the width of the peak. It remains to understand how the selec-
tion of the window length affects the spectral and temporal
resolution of our Gabor transform, and if there is an optimal
value of the parameter a. In order to find the relationship
between the window length and frequency resolution of the
time signal, a discretely sampled simple cosinusoidal signal
x0cos(ωitn) is considered. The discrete Fourier transform of
the cosine signal at a specific angular frequency ωi of interest
yields (provided signal periodicity)

~xDFT(ωk ¼ ωi) ¼
XN�1

n¼0

x0cos(ωitn)e
�iωitn ¼ x0N=2, (12)

where N is the total number of points in the digital signal.
The discrete Gabor transform (DGT) of x ¼ x0cos(ωitn) at ωi

is just the DFT of the time signal after multiplication with a
Gaussian window

~xDGT(ωi, tk) ¼
XN�1

n¼0

x0cos(ωitn)
1ffiffiffiffiffi
2π

p
a
e�(tn�tk)2=2a2e�iωi tn : (13)

Here, tk (where k ¼ 0, 1, . . .N � 1) is considered the arbi-
trary time of interest at which we seek to obtain temporal res-
olution [i.e., the equivalent of τ in the integral form in
Eq. (8)]. In order to obtain the correct peak value at the fre-
quency of interest ωi at t ¼ tk, the amplitude correction factor
Aw is multiplied with the discrete Gabor transform.
Therefore, the rescaled form of Eq. (13) becomes

~xDGT(ωi, tk) ¼ x0N

PN�1
n¼0 cos(ωitn)e�(tn�tk )2=2a2e�iωi tnPN�1

n¼0 e�(tn�tk)2=2a2
: (14)

FIG. 7. The windowed signal shown is the product of x(t)g(t � τ) for a value of τ ¼ 20π s, where x(t) ¼ sin(ωit) with ωi ¼ 1 rad/s and g(t � τ) is the Gaussian
function as given in Eq. (9). (b) The amplitude spectrum of the transformed signal ~x(ω) is shown by the red broken line. The amplitude spectrum of the win-
dowed signal is represented using a blue dotted line and the amplitude spectrum of the windowed signal multiplied with the amplitude correction is shown as
the black solid line.
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Writing the cosine function in terms of (eiωi tn þ e�iωi tn )=2,
Eq. (14) can be simplified to

~xDGT(ωi, tk) ¼ x0N

2

� � PN�1
n¼0 e�(tn�tk)2=2a2 (1þ e�i2ωi tn )PN�1

n¼0 e�(tn�tk)2=2a2

 !
:

(15)

We further simplify Eq. (15) as

~xDGT(ωi, tk)�
x0N=2

� ¼ 1þ
PN�1

n¼0 e�(tn�tk)2=2a2e�i2ωi tnPN�1
n¼0 e�(tn�tk)2=2a2

 !
: (16)

It is clear from Eq. (16) that in the limit a ! 1, the expres-
sion for ~xDGT approaches the discrete Fourier transform result
(~xDFT) we seek. However, in this limit we lose the temporal
resolution. In order to accurately approximate the discrete
Fourier transform through a discrete Gabor transform, we
require the error in Eq. (16) to be small, i.e.,

PN�1
n¼0 e�(tn�tk)2=2a2e�i2ωi tnPN�1

n¼0 e�(tn�tk)2=2a2

�����
������ 1: (17)

The expression above can also be expressed as

PN�1
n¼0 e�(tn�tk)2=2a2 cos(2ωitn)þ isin(2ωitn)ð ÞPN�1

n¼0 e�(tn�tk)2=2a2

�����
������ 1: (18)

The oscillatory nature of the harmonic functions in the
numerator of Eq. (18) is important in considering the error in
a discrete Gabor transform. After amplitude correction the
error oscillates about the correct value (as obtained from
DFT), with a frequency which is two times the frequency ωi

of the test signal. For large N, the error term in Eq. (18) can
be approximated as

�
Ð1
�1 e�(tn�tk)2=2a2 cos(2ωitn)þ isin(2ωitn)ð ÞdtnÐ1

�1 e�(tn�tk)2=2a2dtn
: (19)

Note that this approximation of a summation by an integral
fails for tk close to the edges of the experimental window
due to the partial truncation of one side of the Gaussian
window, which results in an incomplete convolution between
the Gaussian window with the time-varying signal. For this
reason, it is recommended to limit the analysis to the time-
domain from 2a � tk � T � 2a, where a is the window
length and T is the total duration of the experimental time
window. The amplitude of this error can then be evaluated as

Ð1
�1 e�(tn�tk )2=2a2ei2ωitndtnÐ1

�1 e�(tn�tk)2=2a2dtn

�����
����� ¼ e�2a2ω2

i : (20)

We set a tolerance limit of 10�6 for the magnitude of the

error in the discrete Gabor transform,

e�2a2ω2
i � 10�6: (21)

From here, we obtain an inequality between the window
length and the frequency of the input time signal in order to
neglect the oscillatory error present in the discrete Gabor
transform and approximate the transformed result as the dis-
crete Fourier transform of the frequency of interest,

aωi � 2:63 (22)

or equivalently

4a � 1:68
2π
ωi

� �
, (23)

if we write the criterion in terms of the period of oscillation
and the window width 4a shown in Fig. 6. However, increas-
ing the window length to obtain accurate modulus information
at a specific frequency results in decreasing time resolution.
The relationship between the window length and time resolu-
tion is demonstrated in Fig. 8, which shows the amplitude
spectra calculated from application of the discrete Gabor
transform to the signal in Fig. 4 for ωi ¼ 1 rad/s. As the
window length decreases from 4a ¼ 16:8(2π=ωi) ¼ 105:6 s
to 4a ¼ 1:68(2π=ωi) ¼ 10:56 s, the time resolution of the
step change discontinuity at τ ¼ 20π s gets better. However,
when the window length is reduced even further and the
inequality in Eq. (23) is not satisfied, we observe the growth
of an oscillatory error with a frequency of 2ωi as expected
from Eq. (18). Hence, to achieve good time resolution and
frequency resolution we select

FIG. 8. Discrete Gabor transform at ωi ¼ 1 rad/s of the time signal in Fig. 4
for different window lengths. The temporal resolution is improved as the
window length shortens. However, when the window length becomes shorter
than the constraint imposed by Eq. (24), i.e., 4a , 1:68 2π=ωið Þ (or
aωi , 2:63), where ωi ¼ 1 rad/s is the frequency of the imposed sinusoid,
then the oscillatory contribution to the error (which oscillates at a frequency
2ωi) starts to dominate as shown by the magenta solid line with aωi ¼ 1:32.
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4a ¼ 1:68
2π
ωi

� �
(24)

to be the optimal window length (i.e., aωi ¼ 2:63). The
Gabor transform technique can be viewed as a postprocessing
analysis of the recorded time signal data. Therefore, in an
experimental setting, it is feasible to run the experimental
raw data through different values of the Gaussian window
length “a” to obtain better time or better frequency resolution
(high pass or low pass) according to the specific application.
The same approach can be applied to the signal shown in
Fig. 4 with a test frequency ωi ¼ 5 rad/s. The results will
again show improving time resolution as a is decreased. In
general, for a multiwave input signal [48] which has multiple
frequencies of interest, the value of ωi in Eq. (24) should be
the lowest frequency of interest so that the inequality
expressed in Eq. (23) is satisfied for all frequencies present
in the original time signal x(t). The time-frequency uncer-
tainty involved in extracting time and frequency information
using the discrete Gabor transform and its dependence on
window length is discussed in further detail in Appendix A.

It is also important to note that in order to provide temporal
resolution, the Gaussian windowing effectively isolates a
selected part of the whole time signal. This leads to a reduc-
tion of the effective number of points (N) for the Fourier trans-
formation and a potential increase in spectral digitization
noise. Thus digital over-sampling and box-car averaging of the
digitized signal could be beneficial to retain accuracy in the
time- and frequency-resolved material properties. A useful rule
of thumb would be to oversample digitally on the A/D con-
verter by a factor (T=4a) greater than the digital sampling used
for a conventional discrete Fourier transform routine; where T
is the time period of the signal and a is the window length.

IV. APPLICATIONS OF THE GABOR TRANSFORM

A. Extracting time-dependent complex moduli

In Subsections IIIA–IIIC, the discrete Gabor transform
was introduced to overcome the limitations of the discrete
Fourier transform, specifically the lack of temporal resolution
and the assumption of time translation invariance. Data pro-
cessing techniques for amplitude correction and identifying
the optimal window length were discussed to enable use of
the DGT to obtain accurate time- and frequency-resolved
data. The resulting algorithm can be used for extracting time-
dependent complex moduli data for a wide range of thixotro-
pic and aging viscoelastic materials [45]. For such mutating
materials, the time- and frequency-dependent complex
modulus can be generally defined as

G*(ω, τ) ¼ ~σSTFT(ω, τ)
~γSTFT(ω, τ)

, (25)

where ~σSTFT is the STFT of the stress signal and ~γSTFT is the
STFT of the input strain signal.

To demonstrate the application of this idea, we first consider
an aging Kelvin–Voigt model [47] to illustrate the capability of
the discrete Gabor transform for extracting time-dependent

moduli. The aging Kelvin–Voigt model, with a time-varying
modulus and a constant viscosity, has been used by Coussot
[47] for modeling the aging behavior of Bentonite clay, and
the constitutive response can be written in the form

σ(t) ¼ E(t)γ(t)þ η0 _γ(t): (26)

For the purpose of demonstration, we set the viscosity
η0 ¼ 2 Pa s and set the modulus to be a linearly growing
function of time

E(t) ¼ 10þ 0:5t: (27)

The storage modulus and the loss modulus for this time-
varying Kelvin-Voigt model can be expressed analytically as:

G0(ω, t) ¼ E(t) ¼ 10þ 0:5t, (28)

G00(ω, t) ¼ η0ω: (29)

An oscillatory strain signal of the form γ(t) ¼ γ0sin(ωit) with
γ0 ¼ 0:1 and ωi ¼ 10 rad/s is used as the input to the aging
Kelvin–Voigt model. The output stress is calculated from
Eq. (26) and is plotted in Fig. 9(a). The amplitude of the stress
signal increases linearly with time since the modulus increases
linearly with time. The phase of the signal (relative to the input
strain) also shifts with time due to the decreasing phase angle
δ(t) ¼ tan�1 η0ω=E(t)ð Þ, but this is difficult to discern from a
representation such as Fig. 9. To extract the time-dependent
complex moduli from the output stress signal and the input
strain signal using the discrete Gabor transform, a Gaussian
window of window length 4a ¼ 1:68 2π=ωið Þ ¼ 1:056 s is
translated along the output signal as shown schematically by the
red Gaussian line in Fig. 9(a). The Gaussian window traverses
the output stress signal and, as it travels across the signal, the
windowed stress i.e., the product of the stress σ(t) and the
Gaussian window g(t � τ) at every discrete time instant is calcu-
lated. The windowed stress is shown in Fig. 9(b) at time
τ ¼ 32 s and illustrates the time localization that is obtained.
The time-resolved discrete Gabor transform, corresponding to
the discrete Fourier transform of this windowed signal at every
discrete time instant in the range 2a � t � T � 2a is calculated
(where T is the time duration of the stress and strain signal). This
process is also followed for the input strain signal as well, and
using Eq. (25), the time-resolved value of the complex modulus
is obtained (however, a conventional Fourier transform could
also be used here for the strain since the signal is stationary in
time.). The real and imaginary components are shown in
Fig. 9(c). The storage modulus (red data points) and the loss
modulus (blue data points) calculated using the discrete
Gabor transform (up to the illustrated point τ ¼ 32 s) are in
excellent agreement with the analytical solutions for the
storage and loss modulus represented by the red and blue
solid lines respectively in Fig. 9(c). A similar analysis for an
aging Kelvin–Voigt model is performed in Appendix B using
piece-wise rectangular windows as well as Gaussian windows
of different window lengths. This additional analysis shows
that the Gaussian window performs better (in the sense of
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greater accuracy) than a piece-wise rectangular window. The
analysis presented in Appendix B also helps in determining
the window length for optimal time-frequency resolution [i.e.,
for giving minimum error in extracting G0(ωi, t) and
G00(ωi, t)]. The theoretical window length suggested by
Eq. (24) is in excellent agreement with the optimal window
length results determined numerically in Appendix B.

We now consider application of the DGT to experimental data
obtained in SAOS using a 5wt.% bentonite dispersion, a soft
glassy material [32]. The material is first pre-sheared at 500 s�1

for 30 s to eliminate residual microstructure. We then apply an
oscillatory stress input of σ ¼ σ0sin(ωit) where σ0 ¼ 0:1 Pa and
ωi ¼ 1 rad/s. We run this experiment for a time duration of 300 s.
The digitized signal from typical rheometric hardware can be
noisy and therefore, we recommend oversampling for real world
experiments as outlined in [52,64]. The time-evolving Lissajous
curve of the measured strain γ(t) vs input stress σ(t) is shown in
Fig. 10(a). The shape and orientation of the Lissajous orbits
evolve with time as the modulus of the aging fluid increases.
Following the same procedures described for extracting the time-
dependent complex modulus for the aging Kelvin–Voigt model
above, we can use the DGT (aωi ¼ 2:63) to obtain the time-
resolved complex moduli of this bentonite dispersion. The storage
modulus (red data points) increases steadily with aging time as
seen in the model calculation presented in Fig. 10(b). This demon-
strates the physical aging behavior of this soft glassy material. A
logarithmic fit to the measured data gives a characteristic

thixotropic time scale for this bentonite dispersion of
τ thix ffi 8:43 s. The DGT also shows that there is no dependence
of the loss modulus on age time for this bentonite dispersion, indi-
cating that the material becomes more elastic or gel-like with
time, but the viscous contribution to the linear viscoelastic
response remains invariant with time.

B. Extracting dynamic modulus and compliance
from transient startup of oscillatory flow

Observing a complex transient response during the start
up of oscillatory shear flow is common in stress-controlled
rheometers. The secular terms (i.e., the decaying transient and
the final DC offset from the initial zero mean strain) are domi-
nant at the inception of the oscillatory flow and must be
removed before analysis of the final alternance state. Hence,
the conventional procedure for measuring the steady state
compliance J 0(ω) and J 00(ω) is to wait for the transient
response to decay before data collection is started. It has been
recently suggested [65] that understanding this initial transient
response would allow more rapid determination of the visco-
elastic response of complex fluids. Here, we demonstrate the
use of discrete Gabor transforms to obtain accurate material
property information from the initial transient data as well as
steady state data simultaneously. To illustrate the approach, we
consider a two-mode generalized Maxwell model consisting of
two series arrangements of a spring and a dashpot that are

FIG. 9. (a) The output stress from the aging Kelvin–Voigt model given by Eqs. (26) and (27) for an input of γ(t) ¼ γ0sin(ωit) where γ0 ¼ 0:1 and
ωi ¼ 10 rad/s is illustrated by the black solid line. The Gaussian window with 4a ¼ 1:68 2π=ωið Þ ¼ 1:056 s window, which traverses across the output signal is
represented by the red solid line at τ ¼ 32 s. (b) The windowed output signal in time at τ ¼ 32 s. (c) The time-dependent evolution of the complex moduli for
ωi ¼ 10 rad/s. The red solid line and the red data points show, respectively, the analytical solution Eq. (28) and data obtained from the DGT for the storage
modulus. Similarly, the blue solid line and the blue data points represent, respectively, the analytical solution of Eq. (29) and the data for the loss modulus
obtained from the DGT. Please find a video illustrating implementation of the Gabor transform here. Multimedia view: https://doi.org/10.1122/8.0000549.1.
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aligned in parallel to each other. An analytical solution for the
damped oscillatory response following inception of an oscilla-
tory stress are derived in [66]. The input to the system is given
generically by σ ¼ σ0sin(ωt þ ψ) where ψ is a phase lag,
0 , ψ , π=2. The resulting output strain from the system is
composed of three terms

γ(t) ¼ σ0

�
J 0(ω)sin(ωt þ ψ)� J 00(ω)cos(ωt þ ψ)

�

þ σ0
cos(ψ)

ω(η1 þ η2)
þ γ t(t), (30)

where the first term in parentheses represents the alternance
(steady state) response (with J 0 and J 00 the dynamic storage
and loss compliance respectively), the second term represents
the nonzero offset to the strain (which depends on the selected
phase angle ψ) and the last term represents the secular or tran-
sient term. Hassager [66] uses Laplace transforms to show that
this last term can be written analytically as

γ t ¼ σ0
(ωλcos(ψ)� sin(ψ))η1η2(τ1 � τ2)2

(1þ (λω)2)(η1 þ η2)
2(τ1η2 þ τ2η1)

e�t=λ, (31)

where η1, τ1 and η2, τ2 are the viscosity and relaxation time
of each Maxwell mode, respectively, and the single retarda-
tion time for the two mode Maxwell mode is

λ ¼ η1τ2 þ η2τ1
η1 þ η2

: (32)

The model parameters for our illustrative example are chosen
as follows: σ0 ¼ 1 Pa, η1 ¼ 1 Pa s, η2 ¼ 10 Pa s, τ1 ¼ 10 s,
τ2 ¼ 0:01 s, ω ¼ 52 rad/s, and ψ ¼ 0. The retardation time is
thus λ ¼ 9:09 s. The initial oscillatory response of the system
is shown in Fig. 11(a).

To evaluate the steady state and the transient terms, the
Gaussian window with aωi ¼ 3:5 [a wider window than
Eq. (24) to account for the transient] is translated along the
time signal and the discrete Gabor transform is calculated for
2a � τ � T � 2a s for T ¼ 1:8 s. The contribution to the
secular term at each value of time probed corresponds to the
instantaneous DC (ω ¼ 0) component in the discrete Gabor
transform, and the complex compliance J*(ω) is given by the
real and imaginary components of the discrete Gabor trans-
form at the frequency (ωi ¼ 52 rad/s) of the input signal. The
evolution with time of both the secular and the steady-state
time periodic terms at ωi are shown in Figs. 11(b) and 11(c),
respectively. Clearly, both the transient and final periodic
steady state components of the analytic solution are closely
approximated. To quantify this, the error in our determination
of the steady state compliance using the DFT can be defined as

ϵ ¼ jJ*jDFT � jJ*analyticalj
jJ*analyticalj

�����
�����: (33)

We investigate how this error varies for four different
window lengths a ¼ 2:63*m=ωi (with m ¼ 1, 1:5, 2, 3 and
for a fixed value of ωi ¼ 52 rad/s) and compute the error ϵ
using the parameter values given above. The resulting error is
shown in Fig. 11(d) as a function of the number of cycles (n)
of the output strain signal, which are considered for the calcu-
lation of the steady state complex compliance. It can be
observed from Fig. 11(d) that the error incurred by the discrete
Gabor transform decreases more rapidly than the error from
the discrete Fourier transform. The asymptotic plateau value
of the error (resulting from the discrete nature of the DGT and
DFT) also decreases as the window length is increased. There
is more flexibility for selecting the window length aωi in this
application since there is no time dependence in the complex
compliance J*(ω). The trade-off is instead in terms of the time
taken to measure the property vs the accuracy desired.

FIG. 10. (a) Time-evolving Lissajous curves for a small amplitude oscillatory stress (SAOStress) test with a 5 wt. % bentonite dispersion for an input waveform
of σ(t) ¼ σ0sin(ωit) where ωi ¼ 1 rad/s and σ0 ¼ 0:1 Pa. (b) The time-resolved components of the complex modulus for ωi ¼ 1 rad/s are shown. The red data
points and the blue data points represent the storage and loss modulus data obtained from the DGT respectively. The red solid line represents a logarithmic
aging fit: G0(t) ¼ G0 log (t=τ thix), where G0 ¼ 3:62 Pa and τ thix ¼ 8:43 s is the thixotropic time scale for the fluid.
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C. Rapid extraction of nonlinear Fourier–
Tschebyhev coefficients

Another potential application of Gaborheometry is in the
rapid construction of a Pipkin diagram for a complex fluid. In
the linear viscoelastic regime, data across different frequencies
can be rapidly obtained using the OWCh protocol [49,51].
However, in the nonlinear regime, the material functions for a
complex fluid are functions of both the frequency and ampli-
tude of the oscillatory deformation. Conventional techniques
that have been extensively used to probe the Pipkin diagram
in this regime include MAOS and LAOS. In these methods a
sinusoidal signal with a user-specified amplitude and fre-
quency is selected as the input strain signal [16]

γ(t) ¼ γ0sin(ωt): (34)

This corresponds to a single coordinate point ω, γ0 in the
Pipkin diagram represented schematically in Fig. 12. The

output stress in the nonlinear regime can then be written in
terms of a Fourier series expansion

σ(t) ¼ γ0
X
n : odd

G0
nf(ω, γ0)sin(nωt)þ G00

n(ω, γ0)cos(nωt)g,

(35)

where G0
n(ω, γ0) and G00

n(ω, γ0) are the elastic and viscous
nonlinear Fourier coefficients, respectively. When γ0 ! 0,
(i.e., in the linear regime), we expect G0

1(ω, γ0) ¼ G0(ω) and
G00

1(ω, γ0) ¼ G00(ω). The output stress can also be decom-
posed in terms of Tschebyshev polynomials of the scaled
strain and strain rate [8,11–13],

σ(t) ¼ γ0
X
n : odd

en(ω, γ0)Tn(x)þ _γ0
X
n : odd

vn(ω, γ0)Tn(y),

(36)

FIG. 11. (a) The transient response of a two-mode Maxwell model following inception of small amplitude oscillatory shearing. (a) The black solid line repre-
sents the output strain following initiation of small amplitude oscillatory stress at t ¼ 0 with ψ ¼ 0. (b) The evolving secular terms in the response are captured
by the DC term of the Gabor transform spectrum. (c) The red and blue data points show time-resolved estimates of the elastic and viscous compliance obtained,
respectively, from the DGT. The red and blue dashed lines represent the elastic and viscous compliance calculated from a DFT considering the entire time
signal shown in (a). The red and blue solid lines represent the analytical solution for the elastic and viscous compliance, respectively, for the two-mode
Maxwell model given by Eq. (30) with the specified parameters. (d) Mean square error given in Eq. (B3) as the number of cycles considered for the compliance
calculation increases. Please find a video of this implementation of the Gabor transform here. Multimedia view: https://doi.org/10.1122/8.0000549.2.
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where Tn is the nth order Tschebyshev coefficient of
x ¼ γ=γ0 and y ¼ _γ= _γ0. The en coefficients are referred to as
the elastic Tschebyshev coefficients and the vn values are the
viscous Tschebyshev coefficients [11]. The relationships
between the viscoelastic moduli in the Fourier expansion and
the elastic and viscous Tschebyshev coefficients are given by

en ¼ G0
n(� 1)(n�1)=2, (37)

vn ¼ G00
n=ω: (38)

These nonlinear Fourier and Tschebyshev coefficients can be
determined for different input strain amplitudes and frequen-
cies as indicated schematically by the green data points in
Fig. 12. Therefore, for a particular oscillatory frequency of
deformation, in order to find the dependence of G0

n(ω, γ0) or
G00

n(ω, γ0) on strain amplitude or just to plot the evolution of
these nonlinear Fourier coefficients with γ0, one requires
many LAOS experiments at a sequence of successively
larger strain amplitudes. Probing the entire Pipkin diagram
can, therefore, be time consuming [17,22].

We thus, consider using an amplitude-modulated input
signal to perform a slow amplitude sweep at a specified
deformation frequency and then using Gaborheometry to
extract the instantaneous strain-evolving Fourier coefficients
as a function of input amplitude from a single experiment.
This protocol is represented schematically by the vertically

oriented oscillatory solid line shown in Fig. 12. This AM
signal processing technique reduces the number of experi-
ments required to probe the Pipkin diagram as well as post-
processing time. Using Gaborheometry, we can obtain the
dependence of the nonlinear Fourier–Tschebyshev coeffi-
cients on input strain amplitude for a specified deformation
frequency from a single experiment; i.e., we can compute
values of G0

n(ω, γ0) or G
00
n(ω, γ0), or equivalently en and vn,

for a specified frequency using a discrete Gabor transform at
each instantaneous value of the strain γ0(t).

To demonstrate this technique, we consider a linearly
increasing amplitude-modulated input strain signal with ramp
rate r, so the instantaneous value of the strain is

γ(t) ; γ0(t)sin(ωt) ¼ γ i 1þ rt=γ ið Þsin(ωt), (39)

where γ i is the initial amplitude of the modulated signal. The
Gaussian window g(t � τ), which is then passed over the
time signal calculates the windowed signal over a window
length set by the chosen value of a and guided by the discus-
sion in Sec. III C. Of course now we have the additional con-
straint that, within a single oscillatory cycle, the input strain
amplitude should not change significantly so that we can
approximate the oscillatory windowed output signal as a
result of an approximately constant input amplitude.
Therefore, to obtain a relevant constraint, at any time instant
t we require

γ0(t þ 2π=ω)� γ0(t)
γ0(t)

� 1 (40)

or equivalently, using Eq. (39), we can write

2π
ω

r

γ i þ rt
� 1: (41)

This dimensionless ratio controls the rate of change of the
driving signal and may be considered a dimensionless ramp
rate. The Gaborheometry examples considered in Secs. IV A
and IV B correspond to r ¼ 0. For an amplitude-modulated
experiment this ramp rate is nonzero. We may set a tolerance
limit and expect that the nonlinear coefficients determined
for a given strain amplitude γ i þ rt at a particular time t are
accurate when the mutation number of the input signal

Muamp ¼ 2π
ω

r

γ i þ rt
� 1: (42)

Our computational tests show that typically we require
Muamp , 0:1. To demonstrate this technique for obtaining
the nonlinear Fourier or Tschebyshev coefficients from a
single experiment, we consider the K-BKZ time-strain sepa-
rable (TSS) constitutive model [18,23,67,68]

σ(t) ¼
ðt
�1

M(t � t0)h(γ(t, t0))γ(t, t0)dt0, (43)

where M(t � t0) is the memory function of the material and

FIG. 12. General representation of the Pipkin space for a complex fluid in
terms of frequency ω and input strain amplitude γ0. Chirps serve as a quick
way to obtain the linear frequency response of a material. The conventional
way of obtaining nonlinear Fourier–Tschebyshev coefficients by specifying a
single input pair γ0, ω (indicated by each green point) and then imposing a
strain input of the form given in Eq. (34) can be time consuming. A more
rapid method of obtaining nonlinear Fourier–Tschebyshev coefficients for a
specified deformation frequency using amplitude-modulated (AM) ramps to
construct the Pipkin diagram is illustrated.
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h(γ) is a strain damping function which captures the nonline-
arity observed when the imposed strain amplitude increases.
Here, we consider a simple asymptotic expansion for
h(γ) ffi 1þ Aγ2 þ O(γ4), where A is the leading order
damping coefficient and is typically negative for strain-
softening materials. For example, the corotational Maxwell
model corresponds to A ¼ �1=6 [18]. For the purpose of
demonstration, we consider the memory function to simply
follow a single mode Maxwell response,

M(t � t0) ¼ η

λ2
e�(t�t0)=λ, (44)

where η is the zero shear viscosity and λ is the relaxation
constant of the model material. The numerical values for all
the parameters used in this K-BKZ-TSS simulation are η ¼ 1
Pa s, λ ¼ 2 s, and A ¼ �0:6. The amplitude-modulated input
signal considered here is

γ(t) ¼ (γ i þ rt)sin(ωt): (45)

We consider an initial strain amplitude of 1% or γ i ¼ 0:01,
ramp rate r ¼ 0:003 s�1, total time tf ¼ 226 s, and the specified
frequency of deformation is ω ¼ 1 rad/s. The input strain given
by Eq. (45) is substituted in Eq. (43) with the specified memory
function and the damping function to evaluate the output stress.
The resulting continuously varying Lissajous curve representing
the response between the output stress and the input amplitude-
modulated strain for the K-BKZ-TSS model with the specified
parameters is shown in Fig. 13. As, we note above, this curve is
all that is needed to calculate the evolution in the Fourier-
Tschebyshev coefficients with strain amplitude.

The corresponding output stress is shown as a time series
in Fig. 14(a). The Gaussian window g(t � τ) with aω ¼ 2:63

is passed along the time signal and the windowed signal at
every time instant t � τ ¼ 0 corresponds to an input strain
signal of amplitude γ i þ rτ. The real and imaginary part of
the nth harmonic component of the discrete Gabor transform
at time t ¼ τ corresponds to G0

n(ω, γ i þ rτ) and
G00

n(ω, γ i þ rτ), respectively. These Fourier coeffecients can
also be interconverted to the corresponding elastic and
viscous Tschebyshev coefficients using Eqs. (37) and (38),
respectively. The values of G0

1, G
0
3 and G00

1, G
00
3 computed

from the discrete Gabor transform are plotted as red and blue
curves, respectively in Figs. 14(c)–14(f ). The analytical solu-
tion for Fourier-Tschebyshev coefficients for the
K-BKZ-TSS model with a Maxwell kernel and a damping
function of the form h(γ) ¼ 1þ Aγ2 have been derived by
Martinetti and Ewoldt [18],

G0
1ðω; γ0Þ
G0

¼ e1ðω; γ0Þ
G0

¼ De2

1þ De2
þ Aγ20

9De4

(1þ De2)(1þ 4De2)
, (46)

G00
1ðω; γ0Þ
G0

¼ v1ðω; γ0Þ
G0=ω

¼ De

1þ De2
þ Aγ20

(9=2)De3

(1þ De2)(1þ 4De2)
, (47)

�G0
3ðω; γ0Þ
G0

¼ e3ðω; γ0Þ
G0

¼ Aγ20
9De4(De2 � 1)

(1þ De2)(1þ 4De2)(1þ 9De2)
, (48)

G00
3ðω; γ0Þ
G0

¼ v3ðω; γ0Þ
G0=ω

¼ Aγ20
ð3=2ÞDe3(1� 11De2)

(1þ De2)(1þ 4De2)(1þ 9De2)
, (49)

where De ¼ λω and G0 ¼ η=λ. The analytical solutions for
the first four Fourier coefficients are plotted using red and
blue solid lines in Figs. 14(c)–14(f). It is clear that the data
points obtained using the discrete Gabor transform of the
time series at each value of τ corresponding to an instanta-
neous strain γ0 ¼ γ i þ rτ are in good agreement with the ana-
lytical solution for the nonlinear Fourier–Tschebyshev
coefficients. Close inspection of Figs. 14(c) and 14(d) shows
that there is a small but systematic deviation at early times.
This initially may seem puzzling since the input strain ampli-
tude is smallest here; however, it can readily be explained by
considering the temporal evolution of the mutation number
Muamp defined in Eq. (42). Because γ i chosen in this example
is so small (0.01), the dimensionless ramp rate is initially
large even though r ¼ 0:003 s�1. When the dimensionless
ramp rate or mutation number plotted in Fig. 14(b) decreases
to less than 0:1 the errors in the values of the coefficients
obtained from the DGT become negligible. This serves to
illustrate that it is important to choose the initial imposed
strain and ramp rate of amplitude modulation carefully in

FIG. 13. The Lissajous curve for an amplitude-modulated input strain given
by γ ¼ (γ i þ rt)sin(ωt) where γ i ¼ 0:01, r ¼ 0:003 s�1, and ω ¼ 1 rad/s to a
K-BKZ-TSS constitutive equation with a relaxation modulus described by a
single mode Maxwell model characterized by parameters η and λ in the
memory function and a simple quadratic damping function h(γ) ¼ 1þ Aγ2

as the damping function.
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order to obtain accurate values of both the linear and the non-
linear Fourier or Tschebyshev coefficients using our Gabor
transform technique from a single amplitude-modulated ramp.

D. Amplitude-modulated ramps for weakly mutating
materials

Finally, we discuss here the potential of extending this
amplitude-modulated protocol for time-evolving or mutating
materials as well. There are now two time scales and two dimen-
sionless mutation numbers to consider; one characterizing the
rate of change of the imposed strain amplitude, and another char-
acterizing the rate of change in the material itself. To explore
this additional complexity in a systematic manner, we first con-
sider here a suitable “toy model” composed of a mutating non-
linear constitutive response of the Kelvin–Voigt form [8]

σ(t) ¼ f (γ, t)γ þ g( _γ) _γ, (50)

f (γ, t) ¼ G0 þ Gβ(t)
γ

γ*

� �2

, (51)

g( _γ) ¼ η0 � ηβ
_γ

_γ*

� �2

, (52)

Here, f (γ, t) is the nonlinear elastic modulus that is also
aging (or evolving with time) according to Eq. (51) and γ* is
the critical strain beyond which nonlinear elastic effects
become significant. Similarly, g( _γ) is the nonlinear viscosity
function and _γ* is the critical strain rate beyond which non-
linear viscous effects become significant. In order to intro-
duce time-dependence or rheological aging, we make the
coefficient Gβ in Eq. (51) a function of time with a simple
linear form Gβ ¼ c0 þ t=τ thix. We could also readily consider
a logarithmic aging function (motivated by our experiments
with the bentonite clay [Figs. 9 and 10]) but here we seek the
simplest possible functional form. With these assumptions,
using the analysis in [8], the expected nonlinear elastic and
viscous Fourier–Tschebyshev coefficients and the nonlinear
viscous Fourier–Tschebyshev coefficients are given by

e1 ; G0
1 ¼ G0 þ 3

4
γ0
γ*

� �2

Gβ(t), (53a)

e3 ; �G0
3 ¼

1
4

γ0
γ*

� �2

Gβ(t), (53b)

v1 ;
G00

1

ω
¼ η0 �

3
4

_γ0
_γ*

� �2

ηβ , (53c)

FIG. 14. Amplitude modulated Gaborheometry. (a) Output stress represented by the black solid line is from amplitude-modulated strain input,
γðtÞ ¼ (γ i þ rt)sin(ωt), where γ i ¼ 0:01, r ¼ 0:003 s�1, and ω ¼ 1 rad/s, which is supplied as input to a K-BKZ-TSS constitutive equation with a single mode
Maxwell model (with parameters η and λ) as a memory function and h(γ) ¼ 1þ Aγ2 as the damping function. Here, η ¼ 1 Pa s, λ ¼ 2 s, A ¼ �0:6. The red
solid line indicates the Gaussian window at specific instant τ ¼ 205 s which traverses across different stress amplitudes. (b) Evolution of the mutation number
given by Eq. (41) with time or strain amplitude γ(t). (c) Evolution in the first elastic Fourier coefficient G0

1(γ0). (d) Evolution in the first viscous Fourier coeffi-
cient G00

1. (e) Evolution in the nonlinear third harmonic elastic coefficient G0
3. (f ) Evolution in the nonlinear third harmonic viscous coefficient G00

3. The data
points are obtained from DGT and the solid lines represent the analytical solution. Please find a video of implementation of Gabor transform here. Multimedia
view: https://doi.org/10.1122/8.0000549.3.
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v3 ;
G00

3

ω
¼ � 1

4

_γ0
_γ*

� �2

ηβ , (53d)

where Gβ(t) is specified above. Again motivated by the data
in Fig. 9 and 10, we select the following parameter values:
G0 ¼ 5 Pa, γ* ¼ 2, η0 ¼ 7 Pa s, ηβ ¼ 3 Pa s, _γ* ¼ 3 s�1, and
c0 ¼ 4 Pa. We can now vary the thixotropic parameter τ thix to
explore how the rate of mutation of the material properties
influences the measurement error in the nonlinear Fourier–
Tschebyshev coefficients determined using the
Gaborheometry technique. The resulting parameter space is
large because of the number of material coefficients that
must be determined to fully characterize the nonlinear mate-
rial response. Here, we focus on the error in the first elastic
coefficient e1(γ) for various values of the material mutation
number (characterizing the rate of change) and various
dimensionless values of the ramp rate describing the
amplitude-modulated signal [Eq. (42)]. In order to systemati-
cally compute a measure of the errors incurred by the evolv-
ing material properties and the increasing strain amplitude,
we reference the error in the measured e1 for a given strain
amplitude w.r.t e1(γ0, t ¼ 0), i.e., the value of the elastic
modulus for a given strain amplitude at t ¼ 0 is considered
here as the correct or expected property. Therefore, the muta-
tion time of the property e1(γ0) which is the characteristic
time for the change of the material property is given as

λMu ¼ 1
e1

Δe1
Δt

	 
�1

, (54)

where Δe1 is the change in property e1 from its initial state
and Δt is the time taken for the imposed strain ramp to
achieve this change in the property. The experimental time
taken to measure the data point of interest using the discrete
Gabor transform is Δt as well. Therefore, the mutation
number for e1 for this toy model is

Mumaterial ; Mue1 ¼
Δe1
e1(γ0)

: (55)

We choose an amplitude-modulated signal of the form
γ(t) ¼ (γ i þ rt)sin(ωt) where γ i ¼ 0:01 to demonstrate the
potential of amplitude-modulated (AM) sweeps for LAOS in
mutating materials. The ramp-rate is r = 0.3 and the timescale
τ thix in Gβ is varied in order to simulate the error incurred in
determining e1 for a range of mutation numbers of the mate-
rial [Eq. (55)] and a range of amplitude mutation numbers
[Eq. (42)] while using our discrete Gabor transform ampli-
tude sweep technique. In Fig. 15 we show a contour plot of
the percentage error incurred by determining the value of e1
for various values of Mumaterial and for a range of amplitude
mutation numbers (Muamp). Please note that in our calcula-
tion for Mumaterial in Fig. 15, only the time dependent part of
e1 is considered. Similar contour plots can also be made for
the error in e3(t) as well. It is evident that as the material
mutation number and the ramp rate each decrease towards
zero, we obtain increasingly accurate values of e1.

The dashed line in Fig. 15 shows the contour line corre-
sponding to a percentage error of 10%. The blue shaded area
bounded by the contour line indicates the operability window
within which we can safely use the discrete Gabor transform
technique described in this paper to obtain the nonlinear
Fourier–Tschebyshev coefficients even for a mutating or
time-evolving material.

V. SUMMARY AND FUTURE OUTLOOK

In this paper, we have shown how the discrete Gabor
transform—a special case of the STFT with a Gaussian
window specified by its parameter a—can provide time reso-
lution to the determination of viscoelastic material properties
in nonergodic systems. Important implementation details
such as the need for appropriate amplitude correction and
optimal window length selection have been discussed in
order to enable us to use the discrete Gabor transform tech-
niques for quantitative rheometry. An important criterion
while processing recorded oscillatory data using this discrete
transform technique is periodicity. Periodicity of the time
signal must be ensured before using the discrete Fourier
transform or discrete Gabor transform to avoid spectral
leakage. This can be ensured using a suitable window func-
tion w(t). In Sec. III C, we also showed that the optimal
window length selection is given by 4a ¼ 1:68(2π=ωi) ¼
10:56=ωi or equivalently aωi ¼ 2:63 in order to obtain
optimal time and frequency resolution, where ωi is the lowest
frequency present in a general multiwave input signal. In
conventional SAOS rheometry this is the single input fre-
quency. We showed that decreasing the window length in an
attempt to increase the time resolution can lead to significant
oscillatory error with the periodic fluctuations occurring at
twice the frequency of the input time signal. To obtain
further improvements in the time resolution, one potential
option is to use a shorter window length, below

FIG. 15. Contour plot showing the percentage error incurred in determining
values of the first Tschebyshev coefficient e1 for the nonlinear Kelvin–Voigt
model at various values of Mumaterial [Eq. (2)] and MuAmp [Eq. (42)]. The
area bounded by the dashed line (corresponding to a 10% error contour) indi-
cates an appropriate operability window for using the DGT in conjunction
with amplitude-modulated ramps to measure the weakly nonlinear properties
of a mutating material.
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4a ¼ 1:68 2π=ωið Þ and then pass the output of the discrete
Gabor transform through a low-pass filter with cutoff
frequency less than 2ωi in order to filter out the oscillatory
component of the output error. Care of course must be exer-
cised here to ensure the amplitude and phase of the filtered
signal is preserved (or corrected) or the computed values of
the complex modulus will be in error.

The constraints on the values of aωi proposed in the present
paper provide a guideline for selecting the temporal window
length based on the imposed frequency of deformation (which
is known a priori) to obtain optimal time-frequency resolution.
Importantly, the test signal frequency remains constant through-
out a typical rheometric experiment. The material mutation time
scale λMu is, however, not known a priori. From our computa-
tional experiments with time-evolving models (in which the
ground truth is known), we have determined that we need to
ensure that the mutation number is MuAmp � 0:1 to achieve suf-
ficient accuracy in measuring the material functions and extract-
ing the mutation time-scale of a thixotropic material. In the
future, it is possible to imagine a “smart” or data-informed
adaptive Gaborheometry technique that monitors the rate of
sample mutation extracted by repeated Gabor transforms of the
output signal in real time and adjusts the oscillatory test fre-
quency imposed by the rheometer to satisfy this constraint.

The applications of the discrete Gabor transform in rhe-
ometry that have been demonstrated in the present paper
include (i) extracting time-dependent linear viscoelastic
complex moduli for mutating materials; (ii) extracting both
the initial transient and ultimate steady state oscillatory
response from the start-up of oscillatory shear flow; (iii)
obtaining the dependence of the nonlinear elastic and viscous
Fourier–Tschebyshev coefficients on strain amplitude for a
specified frequency ωi by using an amplitude-modulated
(AM) signal given by Eq. (39) to perform a slow strain ramp.
We use this latter analysis to provide an operability diagram
for using such AM signals on weakly mutating materials.

Using this relatively straightforward Gaborheometry pro-
tocol it is possible to extract accurate time- and strain-
resolved properties of complex fluids and soft solids even as
they undergo rheological aging. Importantly, this analysis
can be done offline and does not require any special input
sequence or deformation wave-form (except for the continu-
ously ramped strain amplitude described in Sec. IV C). It
can, thus, be applied as a postprocessing step to any previ-
ously recorded deformation history [provided the full vectors
of γ(t) and σ(t) have been digitized and recorded for
0 , t , T]. This technique can be extended to other
(non-Gaussian) window functions as well. However, we have
selected to focus exclusively on Gaussian windows in the
current paper since it can be shown that they provide the best
(optimal) time-frequency resolution [56]. We hope this rela-
tive ease of implementation will promote broad adoption of
Gaborheometry for thixotropic and aging viscoelastic materi-
als in the future.
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APPENDIX A: TIME FREQUENCY UNCERTAINTY

When using the STFT technique, there is always a trade-
off between frequency and time resolution. Longer windows
give better frequency resolution but poorer time resolution,
whereas shorter windows provide better time resolution but
poor frequency resolution. The time-frequency spread around
a Gaussian operator g(t) obeys the Heisenberg uncertainty
principle [58,59]

 ð1
�1

t2jg(t)j2dt
! ð1

�1
ω2j~g(ω)j2dω

!
� 1

16π2
: (A1)

The kernel inside the time integral is the variance of the
time signal g(t) and the kernel inside the frequency integral
is the variance of ~g(ω), which is the Fourier transform of
g(t) in frequency space. For a Gaussian time signal, the
output of the Fourier transform also results in a Gaussian
function ~g(ω).

To illustrate this time-frequency uncertainty principle, we
consider the signal discussed in Sec II B,

x(t) ¼ sin(1t), t , 15π s,
sin(5t), t � 15π s:

�
(A2)

The input signal, thus, changes abruptly from ωi ¼ 1 to
ωi ¼ 5 rad/s at t ¼ 15π. The initial frequency ωi ¼ 1 rad/s is
the smallest and thus constrains the time resolution. We
sample this signal with N ¼ 20 480 points at a sampling fre-
quency of 217 samples per second (dt = 0.0046 s).

The DGT amplitude spectrum of Eq. (A2) for two differ-
ent window lengths [4a ¼ 1:68 2π=ωið Þ ¼ 10:56 s and
4a ¼ 16:8 2π=ωið Þ ¼ 10:56 s] are shown in Fig. 16. We
define Δω (i.e., the characteristic frequency resolution) to be
the range of discrete frequencies around the given signal
frequency for which the computed power in the frequency
spectrum is more than 80% of the amplitude spectrum at
the input signal frequency ωi. Note that the contribution of
these additional frequencies around the specified input fre-
quency of the signal arises purely from windowing as
illustrated in Fig. 7(b). We define Δt to be the time resolu-
tion with which we resolve the step change in the
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frequency of the input signal at t ¼ 15π. More specifically,
we identify Δt to be the time it takes to undergo 80% of
the amplitude change in the Heaviside step function
embodied by Eq. (A2). It can be seen from Fig. 16 that
for a shorter window length 4a ¼ 1:68 2π=ωið Þ ¼ 10:56 s
(aωi ¼ 2:63), Δt is smaller and the time resolution is better
than for the longer window length 4a ¼ 16:8 2π=ωið Þ
¼ 105:6 s (aωi ¼ 26:3). However, this results in the fre-
quency resolution Δω becoming poorer compared to the
wider window. This illustrates graphically the trade-off in
time and frequency resolution embodied in the time-
frequency uncertainty principle.

APPENDIX B: RESOLUTION AND ACCURACY OF
RECTANGULAR AND GAUSSIAN WINDOW

Here, we compare the performance of a piece-wise rectan-
gular window (which is implemented in some advanced rhe-
ometer software as a “fast sampling” mode) with the
Gaussian window that is employed in the Gabor transform.
To enable a careful comparison of the errors incurred by win-
dowing, we consider a Kelvin–Voigt model similar to
Eq. (26) but with a nonlinear time-dependent elastic modulus

and a constant (time-invariant) viscous contribution

σ(t) ¼ E(t)γ(t)þ η0 _γ, (B1)

where

E(t) ¼ 10þ 0:5t1:5, (B2)

with t in seconds, E(t) in Pascals, and η0 ¼ 2 Pa s. For this
model, the analytical expression for the storage and loss
modulus are given by G0(ω, t) ¼ 10þ 0:5t1:5 and
G00(ω) ¼ η0ω. Selecting an input frequency of ωi ¼ 10 rad/s,
we can calculate the storage modulus and the loss modulus
using Eq. (25) from both piece-wise rectangular windows of
different window lengths as well as using Gaussian windows
of different window lengths (determined by the product aωi).
For a piece-wise rectangular window, the length of the
nonzero portion of the window function is the relevant
measure of its size. For a Gaussian window, we take the
value of 4a in Eq. (9) as the measure of the window length.
We define the error incurred by the STFT calculation from
the different windows to be

Error ¼ 1
N

XN
n¼1

���� log10 �G0
STFT(tn)=G

0
analytical(tn)

����
þ
��� log10 �G00

STFT(tn)=G
00
analytical(tn)

�����: (B3)

The error from the STFT calculations using Eq. (25) for dif-
ferent lengths of both the rectangular window and the Gaussian
window is illustrated in Fig. 17. From Fig. 17, we note that the
Gaussian window resolves the time-dependent evolution of the
signal with a smaller error than the rectangular window for any
value of window width. We can also note that the minimum
error is observed for a Gaussian window with a width between
1 � 4a=(2π=ωi) � 2. Additional exploratory calculations show
that the span of this minimum error interval is also dependent
on the specific form of the time-dependency (i.e., on the muta-
tion number based on the discussion in Sec. IV D) as well as
the different frequencies present in a time and strain-dependent

FIG. 16. (a) DGT spectrum of Eq. (A2) with a ¼ 2:63 s. (b) DGT spectrum
of Eq. (A2) with a ¼ 26:3 s. The total number of points and the sampling
time interval for both cases are N ¼ 20 480 and dt ¼ 0:0046 s. As the time
resolution increases, the frequency resolution decreases and vice versa.

FIG. 17. Comparison of the error defined in Eq. (B3) for the nonlinear
aging Kelvin–Voigt model given in Appendix B using rectangular windows
and Gaussian windows of different window lengths.
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nonlinear signal. However, it is also evident from Fig. 17 that
this local minimum is quite broad so the precise value of aωi

selected is not critical. In general we recommend a window
length of 4a ¼ 1:68 � (2π=ωi) s (aωi ¼ 2:63) for standard rheo-
logical experiments.
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