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Large Amplitude Oscillatory Shear (LAOS) is used as a tool to probe the nonlinear

rheological response of a model elasto-viscoplastic material (a Carbopol microgel). In

contrast to most recent studies, these large amplitude measurements are carried out

in a stress-controlled manner. We outline a descriptive framework of characterization

measures for nonlinear rheology under stress-controlled LAOS, and this is contrasted

experimentally to the strain-controlled framework that is more commonly used. We

show that this stress-controlled methodology allows for a physically intuitive inter-

pretation of the yielding behavior of elasto-viscoplastic materials. The insight gained

into the material behavior through these nonlinear measures is then used to develop

two constitutive models that prescribe the rheological response of the Carbopol mi-

crogel. We show that these two successively more sophisticated constitutive models,

which are based on the idea of strain decomposition, capture in a compact manner the

important features of the nonlinear rheology of the microgel. The second constitutive

model, which incorporates the concept of kinematic hardening, embodies all of the

the essential behaviors exhibited by Carbopol. These include elasto-viscoplastic creep

and time-dependent viscosity plateaus below a critical stress, a viscosity bifurcation

at the critical stress, and Herschel-Bulkley flow behavior at large stresses.
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I. INTRODUCTION

In recent years, there have been many developments in both the basic formulation of

Large Amplitude Oscillatory Shear (LAOS), as well as in its applications to the study of

complex fluids. On the theoretical side, there are still issues to be addressed concerning

the most appropriate way to capture and represent material data, and for these reasons

LAOS remains an active area of research. From a practical standpoint, the utility of LAOS

as an experimental methodology is that it allows both linear and nonlinear behavior of

an unknown material to be probed within a single test protocol. Moreover, the ability to

independently modify the frequency and strain amplitude of the oscillations enables the

mapping of an entire phase space (commonly termed the Pipkin space (Pipkin, 1972)) and

provides a “rheological fingerprint” of the material behavior.

One important use of LAOS measurements is that they can be applied towards the

rational development and validation of constitutive models that predict nonlinear material

behavior. There have already been several examples in the rheology literature of studies

focused on using LAOS to determine model parameters and test the predictive performance

of constitutive models (Giacomin et al., 1993; Zhou et al., 2010; Calin et al., 2010; Ng et al.,

2011; Giacomin et al., 2011; Gurnon and Wagner, 2012). Similarly, in the solid mechanics

and plasticity community, experiments very similar to LAOS are frequently used to probe

material behavior. Solid mechanicians will often use cyclic stress/strain loading curves

(although these are often performed in tension and compression, and not in shear) in order

to determine whether or not a material exhibits a particular type of behavior. One of the

earliest examples of this is the study of the Bauschinger effect (Bauschinger, 1886), in which

it was shown that under cyclic tension/compression metals exhibited a progressive decrease

in their yield strength. This is one example of a behavior that can only be observed and

quantified under cyclic loading conditions, there are numerous other phenomena that can

be observed at large strains which drive the need for development of nonlinear constitutive

models (Gurtin et al., 2010).

Recent developments in LAOS have primarily been focused on carrying out experiments

in a strain-controlled fashion, i.e. a sinusoidal strain is imposed and in turn the periodic

nonlinear stress output is measured. It is then possible to extract information about the

material from this periodic stress waveform. This is typically accomplished through the use
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of Fourier analysis (Wilhelm et al., 1998; Wilhelm, 2002). Ewoldt et al. (2008) developed an

ontological framework that extends the stress decomposition ideas of Cho et al. (2005) and

allows one to physically interpret the higher harmonics in these periodic stress waveforms

in terms of orthogonal basis functions. These basis functions capture and describe physical

elements such as strain-hardening or shear-thinning in a complex material response. For

compactness we refer to this as the LAOStrain framework. Both Ewoldt (2009) and Läuger

and Stettin (2010) developed the corresponding framework for carrying out LAOS tests in

a stress-controlled manner (or LAOStress for short). They extended some of the definitions

of Ewoldt et al. (2008), but it has not yet been clearly elucidated under what conditions

one may prefer to carry out LAOS experiments in a stress-controlled fashion. Läuger and

Stettin (2010) demonstrate that, at large deformations, a given material can behave sub-

stantially differently under the two different cyclic loading histories. Thus, different aspects

of the material behavior in the nonlinear regime may be probed using the two methods.

Elegant arguments such as the ones presented by Plazek (1992) on the physical interpreta-

tion of compliances vs. moduli in the linear regime suggest that there are equally important

considerations to be evaluated in LAOS.

In the present work, we motivate the use of the LAOStress framework for gels and soft

solid materials that can undergo yield-like transitions. We accomplish this by showing that

the nonlinear measures extracted from this framework can be used to rationally guide the

development of a constitutive model that predicts the behavior of such materials, and help

evaluate the relevant material parameters in a systematic fashion. This work will be pri-

marily focused on studying elasto-viscoplastic materials, which are commonly distinguished

from other complex fluids by a critical strain or stress beyond which the material transitions

from a predominantly solid-like to a more liquid-like behavior (Yoshimura and Prud’homme,

1987; Doraiswamy et al., 1991). There have been debates as to whether or not the yield

stress in these materials is a reality or not (see the summary provided by Barnes (1999)).

Nonetheless, for many of these soft materials, the Herschel-Bulkley model (which incorpo-

rates a yield stress parameter) is often successful at capturing steady state flow behavior at

sufficiently large stresses and shear rates (Meeker et al., 2004a; Coussot et al., 2009; Ballesta

et al., 2008; Piau, 2007). There are also other generic types of behavior that are exhibited

by elasto-viscoplastic materials, including wall slip (Barnes, 1995) and many studies have

focused on understanding the nature of this slip and how it relates to the microstructure of
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a material (Gibaud et al., 2009; Ballesta et al., 2008; Meeker et al., 2004b). Thixotropy is

another frequently encountered behavior which some soft elasto-viscoplastic materials may

exhibit (Barnes, 1997; Coussot et al., 2002; Møller et al., 2006). Recently, the presence of

thixotropy has been promulgated as a distinguishing behavior which separates a subclass of

“ideal” yield stress fluids from other classes of yielding materials (Møller et al., 2009).

Large amplitude oscillatory shear has already been utilized as a method to study these

types of fluids (Ewoldt et al., 2007, 2010; Hess and Aksel, 2011; Rogers et al., 2011b,a).

Recently the work by Rogers et al. (2011b) described the response of soft yielding materials

(specifically a colloidal star polymer) to LAOS as a sequence of physical processes. The

authors introduced the concept of a “Cage Modulus” - a measure that captures elastic be-

havior during a particular part of the LAOS cycle. They show that under strain-controlled

conditions this modulus cannot be evaluated in terms of the higher harmonics in the Fourier

transform of the stress signal. This suggests that there may be benefits towards taking

a stress-controlled approach towards LAOS, because the zero stress compliance (J ′M) de-

fined empirically in the work by Ewoldt (2009) and Läuger and Stettin (2010) is inversely

connected to the concept of a “Cage Modulus” discussed by Rogers et al. (2011b,a). Com-

paratively little work has been done in using LAOStress to evaluate these types of nonlinear

measures and distinguish between the predictions of different constitutive models for elasto-

viscoplastic materials (such as the models of Saramito (2009) and Fielding et al. (2009) for

example).

The specific complex fluid studied in the present work is a Carbopol microgel. This soft

solid has been studied extensively in recent years and is a canonical examples of an “ideal”

yield stress fluid that exhibits little to no thixotropy (see Piau (2007) for a good review,

as well as Møller et al. (2009); Møller et al. (2009); Coussot et al. (2009)). The lack of

thixotropy in these microgels has made them ideal candidates for rheological studies. In the

present work, the material measures obtained with LAOStress are contrasted to those of the

strain-controlled framework (LAOStrain), and we discuss the differing physical interpreta-

tions provided by these two sets of measures. Specifically, the compliance J ′M measured in

the limit of zero imposed stress is shown to be a good indicator of the intracycle elasticity

of the material, and only exhibits a weak variation over a wide range of frequencies and

stress amplitudes. Guided by the stress-controlled LAOS measurements, we develop two

constitutive models that predict the rheological behavior of these soft solid materials. These
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rheological equations of state capture a distinct sequence of processes under large ampli-

tude deformation, consistent with that described by Rogers et al. (2011b): in particular,

under oscillatory stress loading, the response involves an initial elastic straining, followed by

viscoplastic flow, and a subsequent elastic unloading when the applied stress is decreased.

The second, more complex, constitutive model discussed here is also capable of exhibiting

a viscosity bifurcation at a critical stress. Below this critical stress the model exhibits an

unbounded power-law–like growth in the viscosity over time, whereas at constant applied

stresses above this critical value, it converges to the familiar Herschel-Bulkley steady state

flow curve that is commonly seen for these types of materials. This nonlinear rheological

behavior can be described in terms of a constitutive process known as kinematic harden-

ing, which is discussed in detail. These models are both formulated using a decomposition

of strain - an approach commonly taken in the continuum mechanics and plasticity litera-

ture (Gurtin et al., 2010). Thus, an added benefit of using these models is that they can

easily be generalized to frame invariant 3D tensorial form using the multiplicative Kroner

decomposition of the deformation gradient, F(x, t) (Kroner, 1960; Gurtin et al., 2010).

II. EXPERIMENTAL

A. Materials

The material used for this study is a 0.5 % wt. Carbopol microgel (Carbopol 901 variant

manufactured by Lubrizol). This class of microgel has been used extensively in many other

studies (Roberts and Barnes, 2001; Piau, 2007) and it has been demonstrated to behave as an

“ideal” yield stress fluid in the sense that it is not strongly thixotropic (Møller et al., 2009).

The steady state flow behavior of Carbopol microgels is typically well predicted by the power-

law Herschel-Bulkley flow rule (Coussot et al., 2009; Oppong and de Bruyn, 2007; Divoux

et al., 2010) provided that wall-slip is eliminated, and is relatively easy to measure due to

the lack of thixotropy exhibited by Carbopol. For these reasons, Carbopol microgels serve

as very useful model fluids for exploring and quantifying the LAOStress framework. The

microstructure of these gels typically consists of highly swollen and compressed spherical-

shaped blobs (of characteristic dimension ∼ 5 µm) which, at high enough concentrations,

provide the material with its yield stress (Ketz et al., 1988; Carnali and Naser, 1992; Piau,
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2007; Mahaut et al., 2008).

B. Rheometry

All strain-controlled oscillatory measurements were carried out on an ARES strain-

controlled rheometer (TA Instruments), while stress-controlled oscillatory measurements

were carried out using an ARG2 rheometer (TA Instruments). Cone and plate geometries

were used in all cases, in order to impose uniform strain fields within the sample. Carbopol

microgels are well known to experience wall slip when subjected to steady shearing deforma-

tions (Roberts and Barnes, 2001; Coussot et al., 2009; Barral et al., 2010) so for repeatable

measurements of true material response it is essential to minimize wall slip. Roughened test

fixtures (created using adhesive-backed sandpaper with controlled grit size) are therefore

used on both rheometers (with root mean squared roughness Rq ∼ 30 µm). The effective-

ness of this roughening was verified using two techniques: first, it was observed that the

roughened surfaces led to increased values of the measured yield stress in the fluid (Barnes

(1995) showed that this indicates a change in the degree of slip in the material); secondly, it

was possible to obtain direct velocimetric measurements of the flow field within the microgel

undergoing steady shearing using a Rheo-PIV apparatus developed previously (Dimitriou

et al., 2011, 2012). These velocimetric measurements show that when the gel is in contact

with the roughened surfaces, wall slip is effectively eliminated.

One important issue that arises when controlling an oscillatory deformation on a sample

with a stress-controlled rheometer is the potential impact that the instrument rotational

inertia may have on the measurements (Läuger and Stettin, 2010). Specifically, for most

single head rheometers (such as the ARG2) the total torque signal measured by the rheome-

ter can be additively decomposed into two components; the sample torque and the inertia

torque. For progressively larger torque amplitudes and oscillation frequencies, the maxi-

mum acceleration experienced by the rotating fixture assembly grows rapidly. As a result,

the inertial contributions to the torque increase and may become large enough to dominate

the total torque signal. For these reasons, all stress-controlled oscillatory shear experiments

were carried out at sufficiently small frequencies and stress amplitudes such that instrument

inertia did not significantly affect the total torque signal. A more detailed discussion on the

effects of instrument inertia is provided in section B of the appendix.
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III. THEORY

A. Stress vs. Strain Decomposition for a Yielding Material

We first motivate our discussion of the stress-controlled LAOS framework by providing

an illustrative example of experimental data. In Fig. 1 below, we show the response of the

Carbopol microgel to a sinusoidally imposed strain, γ = γ0 sinωt when the strain amplitude

γ0 is small (linear region) and when γ0 is large (nonlinear region).
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FIG. 1. Comparison of Carbopol response to small and large amplitude oscillatory deformations.

Data was collected in controlled strain mode, at a frequency of ω = 0.5 rad/s.

As can be seen in Fig. 1 (a), for small amplitudes (γ0 = 0.5%) the response of the

Carbopol microgel to the cyclic strain loading is primarily elastic (with elastic modulus

G = 300 Pa indicated on the plot) and little dissipation due to the low value of G′′ = 12 Pa.

At the large strain amplitude (γ0 = 1000%), the response of the material is qualitatively

different. The shape of the cyclic stress-strain loading curve is closer to a rectangle than an

ellipse. This is representative of the response expected for an elasto-viscoplastic material

as discussed previously by Ewoldt et al. (2010); Hess and Aksel (2011) and Rogers et al.

(2011b). Using the strain-controlled LAOS framework, the total shear stress σ(t) (which is

a periodic signal containing multiple higher harmonic components) can be decomposed into

two contributions, an “elastic” stress σ′ which is a single-valued function of x = γ/γ0 (the

scaled strain), and a “viscous” stress σ′′ which is a single-valued function of y = γ̇/γ̇0 (the

scaled strain rate). The decomposition defined by Cho et al. (2005) and used by Ewoldt

et al. (2008) therefore is:
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σ′ ≡ σ(γ, γ̇)− σ(−γ, γ̇)

2

σ′′ ≡ σ(γ, γ̇)− σ(γ,−γ̇)

2

(1)

The fact that the “elastic” stress σ′ and the “viscous” stress σ′′ are single-valued functions

of strain and strain rate respectively allows one to fit various functional forms to the two

stresses. These functional forms (such as the orthogonal Chebyshev polynomials used by

Ewoldt et al. (2008)) can then be used to understand the type of intracycle nonlinearities

exhibited by the material over the course of one oscillation. While this decomposition

is mathematically sound, the physical interpretation of the decomposition may vary from

material to material (Rogers and Lettinga, 2012). In particular, in Fig. 1 (b), we see that the

decomposed “elastic” stress for Carbopol is apparently very low for strain values −7 ≤ γ ≤ 7

This seems to be at odds with what is known about the linear, elastic behavior of the gel

at low strain amplitudes. The dashed line showing the stress-strain curve for an elastic

solid with modulus G = 300 Pa further emphasizes this discrepancy. What is apparent is

that the zero strain modulus characterizing the decomposed “elastic” stress-strain curve is

much smaller (by several orders of magnitude in fact) than the actual shear modulus G

of the Carbopol measured in the small deformation limit. This contradictory behavior is

difficult to interpret, especially if one wishes to understand the behavior of the material in

terms of a sequence of physical processes, as argued by Rogers et al. (2011b) and Rogers

and Lettinga (2012). It would also be confusing to use polynomial fitting coefficients of

the decomposed σ′ curve to extract information about the elastic behavior of the Carbopol

for oscillatory deformations when γ0 is large. Indeed, Rogers and Lettinga (2012) showed

that one could interpret the LAOS response of the the Elastic Bingham model studied

by Yoshimura and Prud’homme (1987) (in which a linear elastic behavior is present) as

exhibiting strain stiffening - an inherently nonlinear elastic behavior. We can identify a

similar apparent trend in the Carbopol microgel from the upturned shape of the decomposed

elastic stress-strain curve shown in Fig. 1 (b) at large strains.

In order to better understand the behavior of the Carbopol system at these large strain

amplitudes, we first consider a simple elastic-perfectly plastic constitutive model (Lemaitre

and Chaboche, 1990), that approximately captures the behavior of the material in Fig. 1. A
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critical feature of this model is the additive decomposition of the shear strain γ into elastic

and plastic components:

γ = γe + γp (2)

Where the elastic strain γe is related through the shear stress σ as follows:

σ = Gγe (3)

The plastic strain rate, γ̇p is assumed to be zero for stresses below a critical yield stress

|σ| < σy (i.e. there is no plastic flow below the yield stress). When the stress in the material

reaches the yield stress σy, the material yields, resulting in the stress saturating and plastic

flow occurring in the same direction as the stress. For this simple model the plastic flow is

rate independent - i.e. the stress is constant for all values of the plastic strain rate γ̇p. This

constitutive model can be thought of as an elastic element in series with a yielding element,

with elastic strain increasing linearly with the stress, and plastic strain only accumulating

for values of |σ| = σy, the yield stress. The rate-independent plasticity behavior is somewhat

poorly defined (for example, the behavior of this model is not defined for applied stresses

of |σ| > σy) however rate-independent flow can be realized through the following limit of a

power-law flow rule:
σ

σy
= lim

m→0
(γ̇p)m (4)

The response of such a model to an oscillatory deformation γ = γ0 sinωt is shown in Fig. 2.

Beginning from the left hand point (s) on the cyclic curve at zero stress, the material first un-

dergoes an elastic deformation. When the stress reaches the yield stress σy it saturates, and

rate-independent plastic flow begins to occur. When the direction of straining is reversed,

elastic unloading occurs and the stress begins to drop below the yield stress σy.

It can be seen that this model successfully captures the idea that under an increase in

the imposed strain γ(t), the material will undergo a sequence of physical processes. These

processes are specifically those of elastic loading, rate independent plastic flow, and elastic

unloading. The decomposition of the strain γ into elastic (γe) and plastic (γp) components

means that the elastic stress-strain curve (which is just a plot of σ vs. γe) can be overlaid

on the cyclic loading curve (shown as a dashed line on Fig. 2).

It is also possible to use symmetry arguments similar to those made by Cho et al. (2005)
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FIG. 2. Response of a simple elasto-plastic model to oscillatory shear strain γ = γ0 sinωt. The

yield stress corresponds to the location of the plateau in the cyclic curve with a value of σy = 90

Pa.

to extract an apparent elastic strain γ′(σ) (note the functional dependency on the imposed

stress σ) from the measured total strain field γ(t) using the following definition:

γ′(σ) =
γ(t1) + γ(t2)

2
where σ(t1) = σ(t2) (5)

Note that for this particular constitutive model, the apparent elastic strain γ′(σ) determined

from the strain decomposition of Eq. 5 (which assumes nothing about the underlying nature

of the constitutive model) is exactly equal to γe(σ) of the constitutive model given in Eq. 2.

More generally, from the shape of the Lissajous curves shown in Figs. 1, 2, it is clear that this

decomposition more faithfully captures the elastic nature of the material response at small

stresses. One cannot prove that the identity γe(σ) ≡ γ′ holds in general for all constitutive

models, however these decomposed strain curves strongly suggest that, at least for yield-like

elasto-viscoplastic materials, it is more desirable to decompose the measured experimental

strain data into individual elastic and plastic components, rather than the corresponding

stress data. The decomposed strains can then be fit to a particular functional form. For

example, the decomposed elastic strain γe(σ) = γ′(σ) in Fig. 2 can be easily fit to a linear

function, with slope equal to the elastic modulus G from Eq. 3.

We apply this strain decomposition to the Carbopol data presented in Fig. 1, in order to

obtain the apparent elastic strain γ′(σ) of the material. The resulting strain decomposition
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is shown in Fig. 3; clearly when we compare this elastic stress-strain curve to that of Fig. 1

(b), we see that the variation in the apparent elastic strain γ′(σ) in Fig. 3 is in much closer

agreement with the stress-strain curve of the linear elastic solid (dashed line with modulus

G) at low stresses. Given what is known separately about the behavior of the Carbopol at

low stresses from Fig. 1 (a) (i.e. it can be roughly approximated as an elastic solid with

modulus G), the elastic stress-strain curve γ′(σ) obtained in Fig. 3 is thus a better indicator

of how the material behaves elastically over the course of the loading cycle.

The disadvantage of carrying out this strain decomposition when the total shear strain

γ(t) is the input to the system (γ = γ0 sinωt) is that there is no guarantee that the time-

resolved decomposed strain signal γ′ is “linear”, i.e. it will likely contain multiple higher

harmonics. For this reason, we describe a framework in the next section that allows stress-

controlled experiments to be carried out, with total shear stress as the input (σ = σ0 cosωt)

and with the measured strain γ (the output) being decomposable into elastic and plastic

components.
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B. Stress-controlled LAOS framework for analysis of experimental data

The framework used in this paper is similar to that used by Ewoldt (2009) and Läuger

and Stettin (2010) with some slight changes in convention. We also provide complementary

definitions of the analogous Chebyshev coefficients to those used by Ewoldt et al. (2008) for

the strain-controlled case. We begin by noting that we impose a sinusoidal stress on the

material:

σ(t) = σ0 cosωt (6)

The resulting strain γ(t;σ0, ω) can then be decomposed into a Fourier series as follows:

γ(t;σ0, ω) =
∑
n odd

{J ′n(ω, σ0)σ0 cosnωt+ J ′′n(ω, σ0)σ0 sinnωt} (7)

We consider responses in which only odd harmonics are present. This was also the approach

taken by Ewoldt et al. (2008). Even harmonics may arise during transient responses (Atalik

and Keunings, 2004) or due to the presence of dynamic wall slip (Graham, 1995); however we

will not consider these types of phenomena in this work. If desired, it is straightforward to

define the coefficients for even values of n using the formalism we describe. We also neglect

any constant strain offsets (corresponding to the n = 0 term in Eq. 7) that may arise in

the response of the material due to initial nonlinear transients in the startup of the imposed

oscillatory shear stress. These offsets depend on the specific material and the amplitude

of the imposed stress, but in the present framework we will only consider the long time

periodic oscillating state with the intracycle strain γ(t) being defined relative to the average

strain value evaluated over one full cycle. Furthermore, the convention of using a cosine

wave for the imposed stress is adopted, because it simplifies the subsequent expressions used

to determine Chebyshev fitting coefficients.

Based on the fact that there are only odd harmonics present in the strain signal repre-

sented in Eq. 7, we can then decompose our strain into an apparent elastic strain, γ′, and

an apparent plastic strain, γ′′:

γ′(t) = σ0

∑
n odd

J ′n(ω, σ0) cosnωt (8)

γ′′(t) = σ0

∑
n odd

J ′′n(ω, σ0) sinnωt (9)
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The strain decomposition is based on the idea that we desire an apparent elastic strain, γ′,

such that over one cycle of oscillation γ′ is a single-valued function of σ. We also desire

an apparent plastic strain, γ′′, such that its time derivative, the plastic strain rate γ̇′′, is a

single-valued function of σ. The convention of naming γ′ an elastic strain and naming γ′′

a plastic strain then follows because we usually think of elastic strain as depending on the

imposed stress only, and the plastic strain rate during flow as depending on stress only. It

can be shown that the decomposition represented by Eqns. 8 and 9 is unique, in the sense

that no other linear decomposition of γ satisfies the properties of γ′ being a single-valued

function of σ and γ̇′′ being a single-valued function of σ (see Appendix C). However we also

emphasize that for a general class of constitutive models in which strain is decomposable into

elastic and plastic components (denoted γe and γp respectively), the strain decomposition

represented by Eqns. 8 and 9 into apparent elastic and plastic contributions (γ′ and γ′′)

will not necessarily yield the true elastic and plastic strains γe and γp defined through the

constitutive model. In the previous section we saw that that the true and apparent strains

coincided for a simple elasto-plastic constitutive model, however in Sec. IV D we will discuss

an example of a constitutive model in which γe and γp differ from γ′ and γ′′. For these reasons

we use the modifier “apparent” to distinguish between the experimentally-measurable strains

and the constitutive counterparts.

Having defined γ′ and γ′′, we can follow the reasoning of Ewoldt et al. (2008) and represent

these single-valued functions of stress as a series of orthogonal Chebyshev polynomials Tn(x),

where x is the scaled stress, x = σ(t)/σ0.

γ′(t) = σ0

∑
n odd

J ′n(ω, σ0) cosnωt = σ0

∑
n odd

J ′n(ω, σ0)︸ ︷︷ ︸
cn

Tn(x) (10)

γ̇′′(t) = σ0

∑
n odd

nωJn(ω, σ0)′′ cosnωt = σ0

∑
n odd

nωJ ′′n(ω, σ0)︸ ︷︷ ︸
fn

Tn(x) (11)

The above representation follows from the identity Tn(cos θ) = cosnθ. The resulting mate-

rial coefficients in Eqns. 10 and 11 have units consistent with compliances cn(ω, σ0) [Pa]−1

and fluidities fn(ω, σ0) [Pa.s]−1, respectively. Due to the convexity of the 3rd Chebyshev

polynomial, we can infer that positive values of c3 (i.e. increasing compliance) mean that

the apparent elastic stress-strain curve shows stress-softening, while positive values of f3 (i.e.

increasing fluidity) imply stress-thinning of the apparent plastic strain-rate vs. shear stress
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curve. Conversely, negative values of c3 imply stress-stiffening of the elastic material, while

negative values of f3 imply stress-thickening in the viscosity. In general, interpretations of

these 3rd order Chebyshev coefficients can only be meaningful in the case when they are

the leading order of nonlinearity. Furthermore, Klein et al. (2007); Ewoldt et al. (2010)

and Rogers et al. (2011b) showed that in the limit of a perfectly plastic response, a 1/n

dependency is observed in the magnitude of the Fourier harmonics. Therefore, in the case of

yielding materials, the Chebyshev coefficients with order n ≥ 5 can play a significant role in

determining the material response to LAOS. As a consequence, we will generally refrain from

using the individual Chebyshev coefficients fn and cn to characterize material response, due

to some of the concerns discussed by Rogers and Lettinga (2012). Instead, we define a set

of general nonlinear measures that characterize significant features of the material response

to LAOS at a particular temporal point within a sequence of cyclic deformations. These

definitions are identical to those given by Ewoldt (2009) and Läuger and Stettin (2010);

however, the use of a cosine in Eq. 6 (Ewoldt, 2009) instead of a sine (Läuger and Stettin,

2010) results in a slightly different expression for these measures in terms of the compliances

J ′n and J ′′n . Here the measures are also related to the LAOStress Chebyshev framework as

well. The first of these measures is the minimum-stress elastic compliance, denoted here as

J ′M , which is defined and related to the compliance coefficients J ′n or cn as follows:

J ′M ≡
dγ

dσ

∣∣∣∣
σ=0

=
∑
n odd

(−1)(n−1)/2nJ ′n =
∑
n odd

(−1)(n−1)/2ncn (12)

In Fig. 4 we illustrate the difference between the nonlinear measure J ′M for stress-

controlled LAOS and the complementary measure G′M for strain-controlled LAOS, which

is the minimum-strain elastic modulus (Ewoldt et al., 2008) defined as follows:

G′M =
dσ

dγ

∣∣∣∣
γ=0

(13)

In each figure, we show two sets of data - one Lissajous-Bowditch curve is measured

for the Carbopol system undergoing stress-controlled LAOS (σ = σ0 cosωt), and the other

Lissajous-Bowditch curve of the same material under strain-controlled LAOS (γ = γ0 sinωt).

In the linear viscoelastic regime (at small strains and stresses) shown in Fig. 4 (a) the

material response is indistinguishable in LAOStress or LAOStrain loading, as expected.

In Fig. 4 (b) the values of γ0 and σ0 were chosen such that the two experiments would
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FIG. 4. (b) graphical comparison in the nonlinear (yielded) regime of the complementary measures

G′M and J ′M evaluated for stress-controlled LAOS (with σ0 = 100 Pa) and strain-controlled LAOS

(with γ0 = 5) data from Carbopol at a frequency of ω = 0.5 rad/s. A comparison (a) in the linear

viscoelastic regime of the Lissajous curves obtained in LAOStress and LAOStrain oscillatory tests.

result in approximately the same maximum stress and strain. It can be seen that the

qualitative shape of the Lissajous curves is remarkably similar in both cases, even though

the two experimental protocols are different. Specifically, in each curve we can identify

an identical sequence of processes that the material undergoes; corresponding to elastic

loading, followed by plastic flow and then elastic unloading. We see that the minimum

stress elastic compliance J ′M measures the instantaneous compliance when the instantaneous

imposed stress passes through zero, while G′M measures the instantaneous modulus when

the instantaneous imposed strain passes through zero. The critical difference between the

two measures becomes apparent in their location on the Lissajous curve. We see that J ′M

probes behavior in the elastic region of the curve (at stresses below the critical stress), while

G′M probes the behavior in the plastic flow region of the curve at stresses greater than the

critical stress. The compliance J ′M is therefore a better indicator of the intracycle elastic

behavior of the material in the unyielded region, and one of the main benefits of the stress-

controlled LAOS framework is that J ′M can be evaluated using the individual compliance

coefficients J ′n obtained from the Fourier-Chebyshev spectrum (Eq. 12). This definition

of J ′M corresponds to the reciprocal of the “Cage Modulus” defined and used by Rogers

et al. (2011b), although Rogers et al. (2011b) based their definition of “Cage Modulus” on a

strain-controlled experiment. The measure J ′M can, of course, be numerically evaluated for

both stress and strain-controlled experiments, and from Fig. 4 (b) the two appear to have
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similar values (they are in fact within 7% of each other), however in the general nonlinear

case they will not be equal due to the different loading history of the experiments.

These results suggest an alternative interpretation for the measure G′M for yielding ma-

terials. Under a controlled oscillatory strain, G′M is evaluated at zero instantaneous strain.

However, the choice of this zero strain point is somewhat arbitrary, due to the fact that for

a yielding material, irreversible viscoplastic flow is the dominant mechanism of deformation.

Therefore, an alternative interpretation for G′M is that it evaluates the material elasticity at

maximum strain rate. As is observed in Fig. 4, G′M decreases dramatically past the yielding

point, suggesting that in this material elasticity only plays a small role at maximum strain

rate in the yielded regime of the Lissajous curve. However, care must be taken in using

this interpretation to develop a constitutive model since, in general, descriptive rheological

material functions are not necessarily prescriptive constitutive model parameters. In the

upcoming sections we will discuss a model which captures this behavior by implementing

a yielding element in series with a linear elastic element, and the decrease in the material

function G′M being caused by the onset of plastic flow in the material.

Another complementary nonlinear measure that can be defined is the elastic compliance

J ′L at large stresses, which is related to the compliances J ′n and cn as follows:

J ′L ≡
γ

σ

∣∣∣∣
σ=σ0

=
∑
n odd

J ′n =
∑
n odd

cn (14)

Both J ′L and J ′M are nonlinear elastic measures in the sense that they describe local intracycle

elastic behavior in a nonlinear soft solid material or yield stress fluid. If desired, it is also

possible to define a third nonlinear measure J ′K = dγ′/dσ|σ=σ0 which is analogous to the

measure G′k introduced by Ewoldt et al. (2008). In addition to these measures, a relative

ratio of the change in compliance within a large amplitude cycle can be defined:

R ≡ J ′L − J ′M
J ′L

=
4c3 − 4c5 + 8c7 − 8c9 + ...

c1 + c2 + c3 + ...
(15)

When R > 1, the material exhibits pronounced nonlinearities in the form of an apparent

softening.

It is also possible to define corresponding nonlinear viscous measures; for LAOStress these

are based on the measured fluidities instead of compliances. The first of these is φ′M , which
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TABLE I. Comparison of the nonlinear measures appropriate for stress-controlled LAOS with the

analogous nonlinear measures for strain-controlled LAOS.

LAOStrain LAOStress Interpretation in LAOStress

Elastic measures G′L =
σ

γ

∣∣∣∣
γ=γ0

−→ J ′L =
γ

σ

∣∣∣∣
σ=σ0

Large stress elastic compliance

G′M =
dσ

dγ

∣∣∣∣
γ=0

J ′M =
dγ

dσ

∣∣∣∣
σ=0

Zero stress elastic compliance

en cn = J ′n Chebyshev compliance coefficients

c3 > 0 stress softening

c3 < 0 stress stiffening

Viscous measures η′L =
σ

γ̇

∣∣∣∣
γ̇=γ̇0

−→ φ′L =
γ̇

σ

∣∣∣∣
σ=σ0

Large stress fluidity

η′M =
dσ

dγ̇

∣∣∣∣
γ̇=0

φ′M =
dγ̇

dσ

∣∣∣∣
σ=0

Zero stress fluidity

vn fn = nωJ ′′n Chebyshev fluidity coefficients

f3 > 0 stress thinning

f3 < 0 stress thickening

is the minimum stress fluidity and is defined as follows:

φ′M ≡
dγ̇

dσ

∣∣∣∣
σ=0

=
∑
n odd

(−1)(n−1)/2n2ωJ ′′n =
∑
n odd

(−1)(n−1)/2nfn (16)

The second is φ′L, which is the fluidity at large stress and has the following definition:

φ′L ≡
γ̇

σ

∣∣∣∣
σ=σ0

=
∑
n odd

nωJ ′′n =
∑
n odd

fn (17)

The nonlinear measures are summarized in the Table I, and are also contrasted with the

analogous nonlinear measures defined for LAOStrain.

One important issue that bears mentioning is the interrelation between the measures

defined under stress and strain-controlled oscillatory conditions. It is well known that in the

linear regime of deformation, the dynamic compliances J ′ and J ′′ can be interrelated to the

dynamic moduli G′ and G′′ (they are complex conjugates, but are not directly reciprocally

related (Ferry, 1980)). One of the important aspects of the nonlinear relations defined
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in Table I is that because there is no general interrelation between the stress-dependent

nonlinear compliances J ′n and nonlinear moduli G′n for the strain-controlled case, there is no

general interrelation between nonlinear measures such as J ′M and G′M . These measures are

therefore complements, but not conjugates. Furthermore, the nonlinear LAOStress measures

such as J ′M can actually be defined under either LAOStress or LAOStrain conditions, since

their definitions are not based on a particular Fourier decomposition or mode of forcing.

However they will not necessary yield the same value in both cases (see Fig. 4). Care

must therefore be taken when reporting and interpreting different measures of nonlinear

rheological response, and it is particularly important to keep track of whether these are

evaluated under stress or strain-controlled conditions. In this work, whenever LAOStress

measures such as J ′M , J ′L, φ′M , and φ′L are referred to, it is implicit that they are evaluated for

controlled-stress experiments (i.e. for σ = σ0 cosωt). Despite this caveat, the experimental

data in Fig. 4 for the particular case of the Carbopol microgel suggests that the evaluation

of J ′M is not particularly sensitive to whether the experiment is done under LAOStress or

LAOStrain (only a 7% change in the value is apparent at ω = 0.5 rad/s and at σ0 = 100

Pa).

IV. RESULTS AND DISCUSSION

A. Rheology of an ‘ideal’ (non-thixotropic) material

We now focus on a detailed illustration of the utility of the stress-controlled LAOS frame-

work described in Sec. III by applying it to rheological fingerprinting of the Carbopol mi-

crogel. Before probing the behavior of the Carbopol system using LAOS, it is instructive to

demonstrate some of the other important aspects of the rheology of this material. In Fig. 5

we show the steady state flow curve of the microgel in (a), and in (b) the linear viscoelastic

moduli of the microgel are plotted as a function of frequency.

The steady flow data in Fig. 5 is obtained by imposing a given shear rate on the material,

and then waiting approximately 3 minutes for the system to attain a steady state. The

protocol is then repeated at a lower shear rate, and the shear rate is reduced progressively

in steps to γ̇min = 10−3 s−1. The data is fitted to the Herschel-Bulkley model, which is given
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FIG. 5. Flow curve and linear viscoelastic moduli of the Carbopol microgel using roughened cone

and plate fixtures. Linear viscoelastic moduli are obtained with a strain amplitude γ0 = 4%,

corresponding to a maximum stress of σmax ' 15 Pa, which is well below the dynamic yield stress

of σy ' 50 Pa.

by the following expression:

σ = σy + kγ̇m (18)

The parameters for the fit given in Fig. 5 are σy = 49 Pa, m = 0.45 and k = 19 Pa.sm.

The Herschel-Bulkley model is well known to predict the steady state flow behavior of these

types of microgels above the yield stress σy, and has been used in a large number of previous

studies (Piau, 2007; Oppong and de Bruyn, 2007; Coussot et al., 2009). Fig. 5 shows that

there is a good agreement between the HB fit and the data, with some deviation at the

lower shear rates. The linear viscoelastic moduli show that the Carbopol gel behaves as a

viscoelastic solid at low strain amplitudes, with G′ generally about one order of magnitude

larger than G′′. Furthermore, there is a very weak power-law dependency of the parameter

G′ on frequency.

One of the interesting reported aspects of the rheology of Carbopol gels is the slow

creeping flow observed at applied stresses σ0 which are below the yield stress σy. This can

be inferred by noting that (with the selected test protocol of 3 minutes shearing at each

rate) the data points for the steady state flow curve progressively deviate slightly below the

Herschel-Bulkley prediction in Fig. 5 as the stress approaches σy. This suggests that while

the parameter σy determined from Fig. 5 does correspond, in a limiting sense, to a “steady

state” yield stress, the material is still able to creep viscoplastically below this yield stress.
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This type of creep has been documented by previous workers (Møller et al., 2009; Møller

et al., 2009), who have shown that the measured instantaneous viscosity, η+(t) ≡ σ0/γ̇(t)

during creep tests with an applied stress σ0 < σy continues to increase in time, typically as a

power-law with η+(t) ∼ tn. Because the goal of our stress-controlled LAOS framework is to

probe the behavior both above and below the steady state yield stress value σy, it is helpful

to understand the nature of this slow viscoplastic creep occurring for stresses σ < σy ' 49

Pa. We present data from creep tests carried out on the Carbopol microgel in Fig. 6 below.
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FIG. 6. Experimental creep data for the Carbopol system at a number of different applied stress

values σ0 < σy. In (a) the measured strain γ(t) vs. time is plotted, in (b) the instantaneous

viscosity η+(t) is plotted vs. time.

The creep curves in Fig. 6 (a) are characterized by a rapid initial elastic strain response,

followed by a long period of slow creep. In Fig. 6 (b) the instantaneous viscosity η+ as a

function of time is plotted on a logarithmic scale - this viscosity is determined by dividing

the imposed stress σ0 by the local slope of the creep curve, i.e. the instantaneous shear rate

γ̇(t) ≡ dγ/dt. We see that when the applied stress is below σy, the long term creep behavior

of this system is characterized by a power-law–like growth of the instantaneous viscosity

with time (with viscosity scaling as η+ ∼ t0.9). By contrast at imposed stresses σ > σy the

viscosity rapidly settles to a steady value consistent with the steady flow curve shown in Fig. 6

(a). This is similar to what has been observed for the class of fluids that undergo a “viscosity

bifurcation” (Coussot et al., 2002), and is identical to the type of behavior observed by Møller

et al. (2009) (although with a different value of the power-law exponent). The power-law

viscosity bifurcation at a critical stress is difficult to replicate in constitutive models. For
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example, the simple Kelvin-Voigt model for viscoelastic solids predicts that under creep

loading, the strain will increase as −e−t/τ , with τ being a characteristic retardation time. As

a result, the instantaneous viscosity η+(t) will increase exponentially in time at any value of

the imposed stress. The model developed by Saramito (2009) (which incorporates a yielding

transition at a critical stress) exhibits the same deficiency as the Kelvin-Voigt model, because

it predicts Kelvin-Voigt viscoelastic deformation below the yield stress. What is desired is

a constitutive model that predicts a well-defined flow curve at large stresses and a smooth

transition to a power-law increase in the instantaneous viscosity η+(t). An example of such a

model would be the “Soft Glassy Rheology” (SGR) model introduced by Sollich (1998) and

refined by Fielding et al. (2000, 2009). In the forthcoming sections, however, we describe

an alternative and relatively simple evolutionary constitutive model that can capture this

viscosity bifurcation and power-law behavior below a critical stress.

B. Probing nonlinear behavior using LAOStress

LAOStress experiments provide an ideal test methodology for probing the rheological

behavior of the Carbopol microgel above and below the yield stress σy. By varying the

magnitude of the imposed stress amplitude σ0, it is possible to observe how the material

responds to deformations in the linear elastic regime and the ultimate viscoplastic flow

regime. We begin by inspecting the cyclic stress-strain loading curves (or Bowditch-Lissajous

curves) of the Carbopol undergoing an imposed oscillatory deformation with σ = σ0 cosωt

with frequency ω = 1 rad/s. Fig. 7 below shows the response of the material at various

values of the imposed stress amplitude σ0:

The Lissajous curves (and all Lissajous curves that follow) are now plotted with the

shear stress on the abscissa because the controlled input into the system is stress, such that

σ = σ0 cosωt. In Fig. 7 (a) we see that the strains accumulated for σ0 = 200 Pa are very large

due to the irreversible viscoplastic flow which occurs in the material (note that at σ0 = 200

Pa we are well beyond the yield stress σy shown in Fig. 5). In Fig. 7 (b) we expand the

ordinate scale to focus on the response for smaller stress amplitudes, and see the beginning of

a transition in the shape of the curves that occurs for stress amplitudes approaching σy = 49

Pa. The individual curves for varying stress amplitudes are overlaid on the same plot in

order to illustrate an important point - the value of J ′M , i.e. the instantaneous compliance
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FIG. 7. LAOS of Carbopol at a number of different stress amplitudes σ0 and a frequency of 1

rad/s. In (a) the Lissajous curves at the largest stress amplitudes are shown (σ0 = 200 Pa, 100

Pa), smaller stress amplitude curves are shown on an expanded scale in (b)

at zero stress, systematically increases with σ0, so that the material softens. However this

nonlinear material measure does not vary as dramatically as G′M , which is the analogous

strain-controlled LAOS measure defined in Eq. 13.

The full stress-amplitude/frequency dependence of the material response can be com-

pactly illustrated through the use of a Pipkin diagram. However, a drawback to this graphical

representation is that each cyclic curve has to be rescaled for clarity - this is potentially mis-

leading because individual Lissajous curves may then appear to show large relative changes

in the shape of their orbit as well as in associated local measures such as the compliance J ′M .

However, the Pipkin diagram is helpful for illustrating the fact that the yielding transition

in this microgel is a gradual and frequency-independent one, i.e. based on the shape of the

Lissajous curves, we cannot easily pick out a single stress amplitude at which we would

uniquely identify that the material begins to flow. This is due to the dynamic nature of the

stress-controlled LAOS protocol, and the tendency of Carbopol to exhibit some visco-plastic

creep even at the lowest stresses σ0 � σy. As we show below, the Pipkin diagram also serves

as a good construct for objectively comparing the experimentally measured response of the

Carbopol to the predicted response of various constitutive models (i.e. it can serve as a

fitting tool and discriminator).

In order to demonstrate that the small stress compliance J ′M exhibits a weak dependency

on the stress amplitude σ0 and frequency ω (a behavior that is not immediately apparent
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FIG. 8. Pipkin diagram of Carbopol response to LAOS at a number of different frequencies ω

and stress amplitudes σ0. At low stresses the material response shows little dependency on the

frequency ω. A stronger frequency dependence can be seen at the higher stresses.

from the Pipkin space plot, but is clearly seen from Fig. 7), we plot an interpolated contour

plot of the minimum stress compliance J ′M(σ0, ω) which can be evaluated from Eq. 12 using

the individual compliance coefficients J ′n determined for 5 different frequencies and 8 stress

amplitudes. This contour plot is shown in Fig. 9 below, together with a corresponding

contour plot of the nonlinear measure J ′L defined in Eq. 14.

The contour plots of J ′M and J ′L provide a distinguishing fingerprint of the nonlinear

material response. Firstly, we can see that J ′M exhibits a very weak dependency on frequency.

It increases as the stress amplitude is increased (i.e. the material softens) and generally seems

to reach a maximum at around σ0 = 100 Pa, or approximately twice the critical yield stress
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FIG. 9. Contour plots of the nonlinear compliance measures J ′M and J ′L (see Eq. 14 and Eq. 12).

These measures show a weak frequency dependence, and in general increase as σ0 is increased,

reaching a maximum as the material begins to flow then subsequently decreasing.

identified from steady shear. However, the increase is moderate, raising the value of J ′M

from 0.0039 Pa−1 at σ0 = 1 Pa to 0.0063 Pa−1 at σ0 = 100 Pa. For small imposed stress

amplitudes σ0 � σy, we see that the large stress compliance J ′L approaches the value of J ′M

measured at zero instantaneous stress. This is to be expected because the material behaves

primarily as a linear elastic solid for stresses σ0 � σy, and in the linear viscoelastic limit

J ′M = J ′L = J ′1.

It is also possible to create contour plots of the corresponding nonlinear viscous measures,

φ′L and φ′M in order to gain further insight into the material response. These nonlinear mea-

sures of fluidity are presented in Fig. 10 and exhibit a somewhat less complicated dependence

on ω and σ0. In particular, φ′L is completely frequency independent. It is zero for small

values of σ0 � σy then exhibits a sudden increase beyond the yield stress σy as the material

begins to exhibit substantial plastic flow. For this class of materials, the fluidity φ′L therefore

serves as a good indicator of the range of imposed stresses beyond which the material yields

visco-plastically. Conversely, the fluidity measured at zero stress, φ′M , exhibits a depen-

dency on both ω and σ0, but its relative changes are small compared to φ′L. This initially

unexpected dependency will be discussed in the context of two constitutive models in the

upcoming sections.

One of the principal benefits of constructing rheological fingerprints such as the contour
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FIG. 10. Contour plots of the nonlinear fluidity measures φ′M and φ′L. φ′L shows a clear increase as

the stress amplitude is increased beyond the yield stress σy, indicating onset of yielding. A more

complex behavior is exhibited by φ′M , with both stress and frequency dependence.

plots presented in Figs. 9 and 10 is that they provide some insight into how to construct an

appropriate constitutive model that captures the elasto-viscoplastic rheology of the Carbopol

gel. A simple initial postulate is to model the Carbopol below the yield stress as an elastic

solid with modulus G, with Herschel-Bulkley flow occurring as given in Eq. 18 above the

yield stress. Such a proposition is initially reasonable, given the observation that both

J ′M and J ′L are almost independent of ω and σ0 below the yield stress. Furthermore, the

very sudden transition in the fluidity φ′L measured at large stress amplitudes indicates that

there is a distinct difference between the behavior exhibited above and below the critical

stress σy. A piecewise continuous constitutive model is easy to develop, and is described

in the next section. However we will show that there are several aspects of the measured

Carbopol behavior that it does not capture. Specifically, it is unable to capture the stress-

dependent softening that is observed in the nonlinear material measures J ′M , J ′L below the

yield point. After noting these deficiencies, we then modify the constitutive model to capture

the elastoplastic creep that is observed experimentally at small stresses. This “kinematic

hardening” model captures the variation in the nonlinear compliances J ′M , J ′L, and fluidity

φ′M , and enables us to capture more completely the rheological fingerprint of this yielding

microgel.
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C. The Elastic Herschel-Bulkley Model

For an elastic Herschel-Bulkley (EHB) material we begin in a manner similar to the ap-

proach taken for the canonical elastic-perfectly plastic constitutive model that was discussed

in Sec. III A. The model developed here is discussed in the context of one-dimensional defor-

mations, however a full three-dimensional version of this model is outlined in Appendix A.

First, the total strain is decomposed into elastic and plastic components such that γ =

γe + γp as in Eq. 2. This strain decomposition is an essential component of this model, and

the stress-controlled LAOS framework is more appropriate for analyzing the sequence of

physical processes envisioned by such a model. The stress σ in the material is related to the

elastic strain through the modulus G, i.e. σ = Gγe as in Eq. 3, and this elastic contribution

to the total strain is retained beyond the yield point. The rate of plastic strain γ̇p is then

related through the following conditional equation:

γ̇p =

 0 if |σ| < σy

np
(
|σ|−σy
k

)1/m

if |σ| ≥ σy
(19)

Where the material constants σy, m and k are the same as those given in the simple Herschel-

Bulkley model of Eq. 18, and np is the direction of stress, i.e. np = σ/|σ|. The presence of

the directional integer np(= ±1) forces the plastic strain rate to be co-directional with the

imposed shear stress. The only addition to the simple viscoplastic Herschel-Bulkley model of

Eq. 18 is that elastic behavior has been introduced (and this elastic behavior is present both

above and below the yield stress). Compared to the simplest elastic-perfectly plastic material

discussed in Section III A, we have introduced a well-defined rate dependency in the plastic

flow rule given by Eq. 19. One of the important differences between this particular model

and some of the Elastic-Bingham (Yoshimura and Prud’homme, 1987) or Elastic Herschel-

Bulkley (Doraiswamy et al., 1991) type models used in the rheology literature is that there

is no critical strain above which plastic flow begins for this model. The elastic strain γe

therefore does not saturate for this EHB model. This avoids the problems associated with

having discontinuities in the stress that arise during strain-controlled oscillatory experiments,

such as those shown by Yoshimura and Prud’homme (1987). Nevertheless, one downside of

this EHB model that is immediately apparent from inspecting the flow rule in Eq. 19 is that

for stresses below the yield stress value σy, the model will show no irreversible deformation or
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energy dissipation. This dissipation is a result of slow viscoplastic creeping behavior which

is clearly exhibited by the Carbopol microgel even below the critical stress.

One way to inspect the overall ability of a model to predict the rheology of the Carbopol

gel is to overlay the experimental measurements and predicted response of this model in

the Pipkin space represented by Fig. 8. The resulting fingerprint illustrates many different

aspects of the microgel’s response to deformation, from elastic behavior at low stresses

to fully viscoplastic yielding behavior at the higher stresses. In Fig. 11 we compare the

LAOStress measurements with the response of the EHB model with fitting parameters σy =

45 Pa, m = 0.43, k = 26 Pa.sm, G = 350 Pa. Note that these parameters are close to those

obtained from fitting the steady flow curve in Fig. 5 (a), however they have been adjusted

slightly in order to improve the fit of the EHB model to the experimental measurements.

We also note that the elastic modulus G is approximately equal to the elastic modulus G′

measured in Fig. 5 (b).

From close inspection of the predictions in Fig. 11 it becomes apparent that the EHB

model is successful at capturing the behavior of the Carbopol microgel under LAOS in two

limiting regions. Firstly at large stress amplitudes where σ0 � σy (e.g. σ0 = 200 Pa). In this

region the response of the material is primarily dictated by the Herschel-Bulkley flow rule in

Eq. 18. The model also fits the data well at very low stresses σ0 � σy (e.g. σ0 = 1 Pa). At

these low stresses the deformation of the Carbopol gel is close to that of a simple Hookean

solid. The primary limitation to this EHB model, however, is that it is unable to capture

the gradual increase in the hysteresis exhibited by the Lissajous curves as the imposed stress

amplitude approaches the critical stress σy. This is because the model assumes perfectly

elastic behavior below σy. By inspecting Fig. 6 or 7, we can see that Carbopol gel is far

from a perfect linear elastic solid when σ < σy.

Plotting the nonlinear compliances J ′M and J ′L at a given frequency as the stress amplitude

is incremented provides further insight into the deficiencies of the EHB model in capturing

the nonlinear behavior of the Carbopol gel. In Fig. 12 we overlay onto the experimental

data the values of these nonlinear measures for two models, the EHB model which has been

discussed in this section (broken line), and the KH model (Kinematic Hardening model;

solid line) which will be described in the next section.

It is clear that both the small strain and large strain compliances J ′M and J ′L increase as

the stress amplitude σ0 is increased and the material softens. Both values reach a maximum
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FIG. 11. Pipkin diagram showing comparison of EHB model (black) with Carbopol data (orange)

at a number of different frequencies ω and stress amplitudes σ0. Shown are individual Lissajous

curves of strain γ(t) vs. stress σ(t). The EHB model fitting parameters are σy = 45 Pa, k = 26

Pa.sm, G = 350 Pa, m = 0.43.

at a value of σ0 ' 100 Pa, followed by a subsequent decrease in their value. The EHB

model however, predicts an ideal elastic response with J ′M = J ′L = 1/G = 0.0029 Pa−1.

The reason why this is the case can be easily understood if one considers the nature of the

strain decomposition given in Eq. 8 and 9. We stated previously in Sec. III (and show in

Appendix C) that the strain decomposition in Eq. 8 and 9 is unique in the sense that no

other decomposition provides an apparent elastic strain γ′ that is a single-valued function

of σ, and an apparent plastic strain rate γ̇′′ that is a single-valued function of σ. For the

EHB model, γe is a single-valued function of σ (defined through Eq. 3), and Eq. 19 is

formulated such that γ̇p is also a single-valued function of σ. It therefore follows that when
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FIG. 12. Plots of the compliance measures J ′M and J ′L at a frequency of ω = 5 rad/s for a range

of stress amplitudes. Carbopol data is contrasted to two models, the Elastic Herschel-Bulkley

model (fitting parameters σy = 45 Pa, k = 26 Pa.sm, G = 350 Pa, m = 0.43) and the Kinematic

Hardening model (KH) described in the next section.

the strain decomposition given in Eq. 9 is carried out for the EHB model undergoing a

stress-controlled oscillatory deformation, we obtain γ′ = γe and γ̇′′ = γ̇p. Thus, for the

EHB, model the unique value of elastic strain determined from the experimental strain

decomposition of Eq. 9 is identical to the elastic strain defined in the constitutive model

(Eq. 2). The nonlinear measure J ′M can then be determined by combining the definition in

Eq. 12 with our strain decomposition of Eq. 8 and 9. Specifically:

J ′M =
dγ′

dσ

∣∣∣∣
σ=0

+
dγ′′

dσ

∣∣∣∣
σ=0

(20)

Using the chain rule and the fact that there are only odd harmonics present in the response

of the EHB model, together with the fact that σ = σ0 cosωt, it is possible to show that the

second term in Eq. 20 is zero. Then, because γ′ = γe, the equation above is rewritten:

J ′M =
dγe

dσ

∣∣∣∣
σ=0

=
d

dσ

σ

G

∣∣∣∣
σ=0

=
1

G
(21)

Similar reasoning can be used to show that J ′L = 1/G for all values of ω and σ0 for the EHB

model. In particular:

J ′L =
γ

σ

∣∣∣∣
σ=σ0

=
γ

σ

∣∣∣∣
t=0

(22)
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And because γ′′ = γp is zero at t = 0 we have:

J ′L =
γe

σ

∣∣∣∣
t=0

=
1

G
(23)

It is therefore clear that although the EHB model is successful in capturing the behavior of

the system at both very low stress amplitudes and very large stress amplitudes, the material

response at intermediate stresses is more complex.

Similar arguments about the deficiencies of the EHB model can be made by inspecting

plots of the nonlinear viscous measures φ′L and φ′M as shown in Fig. 13. The EHB model

provides a very good agreement with experimental data for the fluidity measure φ′L - this

is because φ′L is a measure of the viscous behavior of the material at large stresses, and

this is dominated by the Herschel-Bulkley flow rule in Eq. 18. However, at small imposed

stresses, the EHB model is purely elastic (no dissipation) and therefore predicts that for all

values of ω and σ0, the fluidity φ′M is identically zero. This follows from the definition of

φ′M , which samples the material response instantaneously at the point within an oscillatory

cycle where the imposed stress is zero. The Carbopol gel, on the other hand, exhibits a

progressive increase in φ′M as σ0 is increased.
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FIG. 13. Plots of the nonlinear fluidities φ′M and φ′L (note the difference in ordinate scales) at

a frequency of ω = 5 rad/s for a range of stress amplitudes. Carbopol data is contrasted to two

models, the Elastic Herschel-Bulkley model (fitting parameters σy = 45 Pa, k = 26 Pa.sm, G = 350

Pa, m = 0.43) and the Kinematic Hardening model (KH) described in the next section.

In order to motivate the development of a more advanced constitutive model, we have

overlaid on Fig. 12 and 13 the predicted values of the nonlinear measures J ′L, J ′M , φ′L and
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φ′M for an alternate constitutive model which incorporates a behavior known as kinematic

hardening (Lemaitre and Chaboche, 1990). The nonlinear response of this particular model

appears to capture more completely the increase and subsequent decrease in the compliances

J ′L and J ′M as the stress amplitude σ0 is increased. In the following section we will show

that by incorporating this behavior (which involves the addition of only one more material

constant) we can capture the salient features of the Carbopol gel response to LAOStress

deformations. This model also removes the somewhat arbitrary discontinuous flow/no flow

condition given by Eq. 19. This more sophisticated kinematic hardening model will also

test the strengths and limitations of the LAOStress strain decomposition (Eqns. 8 and

9) demonstrating a case in which the one-to-one equivalence between the experimentally-

measured strains defined in the decomposition of Eq. 8 & 9, and the elastic and plastic

strains, γe and γp in the model, breaks down.

D. An Elasto-Plastic Material with Kinematic Hardening (KH Model)

We seek to develop a constitutive model that improves on the ability of the EHB model to

capture the rheological fingerprint of the Carbopol gel under LAOS. While there are many

potential ways to accomplish this, there were two main criteria that were used to identify an

appropriate model. The first is simplicity, i.e. the desire to introduce as few new additional

parameters as possible to the existing EHB model. The second criterion was to build on

well-established concepts that already exist in the plasticity literature.

Based on these criteria, the EHB model was modified in order to account for a behavior

known as kinematic hardening. The basic concept behind the behavior of kinematic harden-

ing is that it accounts for movement of the center of location of the yield surface (in stress

space) for a given material (Lemaitre and Chaboche, 1990). For the simple 1-dimensional

model which we will deal with here, this implies that the yield stress of the material evolves

dynamically with time, as the material is deformed. Kinematic hardening is a concept that

is widely used in the plasticity literature, but for the rheologist who is unfamiliar with the

topic we recommend one of the many textbooks which have been written on the topics of

continuum mechanics or plasticity (Lemaitre and Chaboche, 1990; Khan and Huang, 1995;

Gurtin et al., 2010). For clarity, we have tried to keep the nomenclature in the present

work consistent with that used in the plasticity and solid mechanics literature (particularly

31



with that of Gurtin et al. (2010), Henann and Anand (2009), Anand et al. (2008) and Ames

et al. (2009)). While the case discussed in detail here is a simple 1-dimensional version, in

Appendix A we outline the formulation of a frame-invariant, thermodynamically-consistent

version of the constitutive model in 3D tensorial form. The reader can also consult Henann

and Anand (2009) for a complete version of the model with combined kinematic and isotropic

hardening.

As was the case for the EHB model considered in Section IV C, the strain in the KH

model admits an additive decomposition; γ = γe + γp as in Eq. 2. We follow the approach

of Gurtin et al. (2010); first a simple form of the free energy of the material is proposed,

from which equations for the stress follow. For this particular model, the defining equation

for the free energy ψ of the material is as follows:

ψ =
1

2
G (γe)2 +

1

2
C (A)2 (24)

The free energy contains two terms, the first is an elastic free energy, which depends on

the elastic strain γe. This first term would be equivalent for the simpler EHB model, but

for the KH model we introduce a second term, a “defect” energy which depends on a di-

mensionless internal variable A. In the context of polycrystalline metals, this defect energy

would be the result of the formation and movement of dislocations in the crystal lattice. For

the Carbopol system, the defect energy results from corresponding features relevant to the

specific microstructure of the material. Piau (2007) described the microstructure of Car-

bopol gels as consisting of individual swollen polymeric sponges. At a high enough volume

fractions, these constituent elements likely become trapped in “cages” that are formed by

the neighboring particles, and a defect energy may arise from slip occurring between these

particles and a topological rearrangement of their structure (Menut et al., 2012). In Eq. 24

the variable A is not a strain per se, but in the 3-dimensional generalization of this model

(which is discussed in Appendix. A) it shares some of the properties of a finite strain tensor.

In particular it was shown by Henann and Anand (2009) that the 3-dimensional tensorial

version of this variable, A, is equivalent to an “energetic” plastic left Cauchy-Green tensor

(or Finger tensor). The defect variable A evolves as the accumulated plastic strain γp in

the material varies. The parameter C is a new material constant, termed the back stress

modulus (Ames et al., 2009), which has dimensions of stress.
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From the form of the free energy that is specified in Eq. 24, the equation for the stress

in the material is σ = ∂ψ
∂γe

= Gγe as in Eq. 3. While σ is still the stress in the material,

and corresponds to the stress that would be measured in an experiment, the presence of

the additional term gives rise to a second contribution to the stress, referred to as the back

stress, σback = ∂ψ
∂A

:

σback = CA (25)

The back stress corresponds to the center of the location of the yield surface (in stress space)

in the material, and is integral to the development of this model. The fact that the value of

the back stress varies with A, allows for time variation in the “effective” stress, |σ − σback|

within the material, which determines the plastic flow rate, even when the imposed stress

σ is held constant. The plastic flow rate γ̇p is related to the effective stress through the

following equation:

γ̇p = np|γ̇p| where np =
σ − σback

|σ − σback|
(Direction of plastic flow) (26)

|γ̇p| =
(
|σ − σback|

k

)1/m

(Magnitude of plastic flow rate) (27)

The equation for the plastic flow rate for this particular model is slightly different from that

of the EHB model, which is given in Eq. 19. The yield stress parameter σy has been set

to zero in the equation above, and the stress |σ| has been replaced by the effective stress

within the material that is driving plastic flow, |σ− σback|. We include the variable np again

in order to make it clear that the plastic flow is co-directional with the effective stress, and

not with the total applied stress σ. The last important element of this constitutive model

is to specify the evolution in the defect energy which involves the plastic flow rate γ̇p. The

differential equation for the parameter A in a simple one-dimensional form is as follows:

Ȧ = γ̇p − qA|γ̇p| (28)

This evolution equation accounts for so-called nonlinear kinematic hardening (due to the

dependence of |γ̇p| on A in Eq. 27) and was first introduced by Armstrong and Frederick

(1966) in order to account for the multiaxial Bauschinger effect. The differential equation

is always evaluated with initial conditions of A(0) = 0, i.e. the material is in a virgin state
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with zero defect energy at the start of the deformation. In the differential equation above

(Eq. 28), we have introduced the dimensionless parameter q, as an additional material

constant. Note that when compared to the EHB model, we have removed the material

constant σy and introduced two new constants, q and C. We have therefore increased the

number of material constants in this model relative to the EHB model by one.

It is now clear that with the addition of Eq. 28 to the constitutive model (given by

Eqns. 24, 25, 26 and 27) we can have a dynamic evolution of the back stress σback as the

material is deformed. The implications of this evolution equation for A on the flow behavior

can be understood with some simple reasoning. The material always starts out with an

initial value of A(0) = 0. Then, if we consider the application of a constant stress σ, the

material will initially deform elastically, but will also begin to experience some plastic flow

due to the fact that the back stress is zero (Eq. 25) for the specified initial conditions.

As plastic flow occurs, Ȧ will initially be positive, resulting in growth of the value of A.

Eventually the second term in the differential equation in Eq. 28 will grow resulting in a

reduction in the rate of change of A, until ultimately the material reaches a steady state

flow corresponding to Ȧ = 0. Thus, the increase of A with time results in a decrease in

the rate of plastic flow γ̇p, or an apparent “kinematic hardening” which is exactly what is

observed for creep tests of the carbopol system (see the creep curves in Fig. 6).

At steady state, the KH model approaches the same form as the EHB model, predicting

Herschel-Bulkley flow behavior, which is also exhibited by the Carbopol gel as shown in

Fig. 5. To show this, we set Ȧ = 0; from Eq. 28 it then follows that qA = ±1 (depending on

the direction of the applied stress). Furthermore, from Eq. 25 it follows that σback = ±C/q at

steady state. When we insert this steady state value of σback into the flow rule of Eq. 27, we

exactly recover the Herschel-Bulkley flow equation of Eq. 18 at steady state, and we identify

C/q = σy. The ratio of material constants C/q can therefore be determined by measuring a

steady state flow curve such as the one presented in Fig. 5.

The KH model thus successfully captures the steady state flow behavior of the carbopol

microgel at stress values σ > σy. It is also possible to show that the model successfully

captures the correct creep behavior for imposed stresses below the yield stress. To show

this, we plot in Fig. 14 the evolution of the apparent viscosity of this particular model,

defined as η+ ≡ σ0/γ̇(t), for a number of creep tests with different applied stresses σ0. The

model was simulated using an Euler forward-time integration scheme, with parameters set
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as follows: G = 350 Pa, C = 540 Pa, q = 12, k = 26 Pa.sm, m = 0.43. Note that these are

the same parameters as those used for the EHB fit in Fig. 11, however the value σy = 45

Pa is now represented by the ratio C/q leaving only one free parameter to adjust (either

the value of q or C). These values are also the same parameters that were used to evaluate

the nonlinear compliances J ′L, J ′M , φ′L and φ′M for the kinematic hardening model shown in

Fig. 12 and 13. The numerical values were determined to best capture the overall response

of the Carbopol microgel to stress-controlled LAOS (see details below).
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FIG. 14. Plot showing evolution of the apparent viscosity η+ ≡ σ0/γ̇(t) for the KH model at

a number of different imposed stresses above and below the value σy = C/q = 45 Pa. Model

parameters for the KH model were C = 540 Pa, q = 12, k = 26 Pa.s m, G = 350 Pa, m = 0.43.

In Fig. 14 we show that the KH model predicts creep behavior that is qualitatively similar

to that exhibited by the Carbopol microgel shown in Fig. 6 (b). For imposed stresses larger

than the critical value σy = C/q, the viscosity approaches a steady state rather quickly,

and this steady state dependency of viscosity on stress is governed by the Herschel-Bulkley

equation given in Eq. 18. For values of the stress σ < C/q, continued power-law growth of

the instantaneous viscosity is seen with time. The power-law exponent for this particular set

of fitting parameters is determined to be to 1.75. An asymptotic expansion of Eqns. 25-28

under constant applied stresses σ < σy yields the following scaling:

η+ ' ηc

(
t

tc

)1/(1−m)

(29)

This scaling holds for values of the imposed stress below the yield stress C/q, for values
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of 0 < m < 1 and for long times. When the imposed stress σ is exactly equal to the yield

stress i.e. σ = σy = C/q, the constitutive equations predict a linear growth in viscosity with

time, with η ∼ Ct/m (this linear dependency can be identified as the dividing line of slope

1 in Fig. 14). The parameters tc and ηc in Eq. 29 represent, respectively, a characteristic

time scale and a characteristic viscosity scale for the KH model. They can be determined

through the asymptotic expansion to be:

tc =

(
k

C

)1/m

(30)

ηc = σ

(
k

C

)1/m [(
1− qσ

C

)(1−m
m

)]1/(1−m)

(31)

This particular model is therefore capable of capturing the power-law like growth in the

instantaneous viscosity that we have observed in Carbopol. The slope of 1.75 in Fig. 14

is somewhat larger than the slope seen for Carbopol in Fig. 6 (b). The parameter m

can be modified in order to model the correct rate of increase of η+ with time, however

for the purposes of fitting the model to LAOS data in the upcoming figures, we found a

better agreement when we used the value of m determined from the Herschel-Bulkley fit

in Fig. 5 (a). This is reasonable because for the LAOS data (where strains are large) it

is of primary importance to capture the behavior of the post-yielded flow regime, while

small variations in the creeping behavior which occur below the yield stress do not play as

important a role in the fitting of the constitutive model parameters.

One interesting consequence of this type of power-law growth or viscosity bifurcation

is that it is possible for the model to capture a limiting viscosity plateau for σ ≤ σy in

plots of apparent viscosity vs. imposed shear stress. These types of plateaus have been

documented for Carbopol, and often spark debates as they beg the question as to whether

or not a material truly exhibits a yield stress (Barnes, 1999; Møller et al., 2009). Fig. 15

shows a plot of viscosity vs. shear stress obtained from creep simulations carried out on the

kinematic hardening model (with the same fitting parameters as Fig. 14) at a number of

different imposed stresses. For each stress, the simulation is stopped after a given period

of time, and the viscosity is instantaneously sampled. Viscosity plateaus are plotted for a

number of different values of the dimensionless time t̂ ≡ t/tc. From Fig. 15 it is clear that

the material exhibits a time dependent plateau in the shear viscosity at stresses σ < C/q.
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The magnitude of this viscosity plateau increases as the measurement time is increased and

diverges as t̂→∞. The viscosity measurements at stresses σ > C/q however, are insensitive

to measurement time and converge to the Herschel-Bulkley equation quickly. Additionally

it can be noted that the numerical value of apparent viscosity varies non-monotonically with

the applied stress σ at a fixed value of t̂. This is due to the non monotonic variation of ηc

with σ which is given in Eq. 31.
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FIG. 15. Plot showing apparent flowcurve of the viscosity predicted by the KH model after different

wait times. Flowcurves are obtained through simulations at a constant imposed stress, the viscosity

is sampled at dimensionless times of t̂ = 1.2× 103 (M), 1.2× 104 (#), and 1.2× 105 (2) after the

stress is imposed (corresponding to t = 1, 10 and 100 seconds). The overlaid solid line is the

Herschel-Bulkley flow curve with the same values of model parameters m, G and k as the KH

model, and with σy = C/q = 45 Pa.

We have thus shown that the kinematic hardening model is capable of capturing several

aspects of the rheological behavior of an ideal yield stress fluid such as Carbopol. It is

considerably more versatile and realistic than the simpler EHB model, and only introduces

one additional material constant. For the KH model, the plastic strain rate γ̇p always varies

continuously with the stress, and there are no conditionals on the evolution equations (such

as the one in Eq. 19) to determine whether or not plastic flow will occur. Furthermore, as a

result of the differential equation that defines the evolution in the parameter A, we recover a

“viscosity bifurcation” (Coussot et al., 2002) with power-law–like growth in viscosity below

a critical stress C/q, and convergence of the viscosity to a steady state value given by Eq. 18

above the critical stress C/q. It is therefore possible for the material to evolve towards two

different states, with these states being separated by a “yield stress” determined by the ratio
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of the parameters C/q.

E. KH Model under LAOStress

So far, we have only studied the behavior of the kinematic hardening model under con-

stant applied stress conditions. It is also possible to test how well the model fares at

capturing flow behavior of the Carbopol gel under dynamic conditions, i.e. stress-controlled

LAOS. In Fig. 16, we have overlaid the response of the kinematic hardening model (black)

onto the response of the Carbopol (orange) on a Pipkin diagram.
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FIG. 16. Pipkin diagram showing comparison of kinematic hardening model (black) with Carbopol

data (orange) at a number of different frequencies ω and stress amplitudes σ0. The KH model

fitting parameters are the same as those used in Figs. 12–15 and are the same as the EHB fitting

parameters in Fig. 11 with σy = C/q.
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It is clear from Fig. 16 that the kinematic hardening model performs considerably better

than the EHB model in capturing the material response to LAOStress conditions. Both

models predict approximately the same behavior at the largest stress amplitude, σ0 = 200

Pa, and the agreement between both models and the Carbopol data is excellent for this

value of σ0 � σy. This is primarily a testament to the effectiveness of the Herschel-Bulkley

model in capturing the steady state flow viscosity. However, the kinematic hardening model

offers a considerable improvement over the EHB model in terms of modeling the measured

behavior at moderate stress values of σ ≤ 50 Pa. This improvement is due to the ability

of the KH model to admit plastic flow for imposed stresses below the value C/q, which

the EHB model does not account for. It is also important to emphasize the fact that the

values of the fitting parameters m, k and the ratio C/q are constrained by the fit of the

steady shear data in Fig. 5 to the Herschel-Bulkley model. Thus, the kinematic hardening

model has effectively linked the transient nonlinear behavior under LAOS to steady state

flow measurements such as those in Fig. 5.

By inspecting Fig. 16 and comparing it to Fig. 11 it is also clear that the variations

in the material measures J ′M and J ′L at all of the tested frequencies are more accurately

represented by the kinematic hardening model. The evolution in the values of J ′M and J ′L

for the kinematic hardening model (plotted in Fig. 12) are related to the variation in the

elastic and plastic strains defined in the constitutive model, γe and γp. In particular, as

a result of the differential equation relating γ̇p to the defect parameter A, γ̇p is no longer

a single-valued function of the stress σ. It is important to note that the apparent plastic

strain γ′′ given by the strain decomposition in Eq. 9 is therefore different from γp, because

the strain rate γ̇′′ given by Eq. 9 must be a single-valued function of σ by construction (see

Appendix). Monitoring and quantifying changes in the values of nonlinear measures such

as J ′M and J ′L in LAOStress can help in understanding the evolution in internal parameters

(like A or the back stress σback in the KH model) and this provides insight into how one

might approach more sophisticated constitutive modeling of these kinds of soft materials.

To illustrate this, in Fig. 17 we present contour plots of the nonlinear material measures

J ′M(ω, σ0) and J ′L(ω, σ0) for the kinematic hardening model. These can be contrasted with

the contour plots of the measured values of J ′M and J ′L for Carbopol in Fig. 9. The general

qualitative behavior of the model and the microgel is similar. For example, for the minimum

stress compliance J ′M , both model and data exhibit an initial increase and then a subsequent
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decrease as the stress amplitude σ0 is increased. However, there is a stronger frequency

dependence predicted for the kinematic hardening model - this can be discerned from the

slopes of the isocontours. For the large stress compliance J ′L, both model and data show

an initial increase to a value larger than that of J ′M , i.e. the material softens (or becomes

more compliant) at large stresses. Again, the kinematic hardening model shows a stronger

frequency dependence than the measurements, and also the maximum value of J ′L predicted

by the kinematic hardening model is smaller than that observed experimentally.
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FIG. 17. Contour plots of the nonlinear material measures J ′M and J ′L for the KH model with the

same fitting parameters used in Fig. 16. Qualitatively similar features to the contour plots of the

Carbopol microgel in Fig. 9 can be seen in these contour plots.

For completeness, we add contour plots of the fluidities φ′L and φ′M for this model so

that they can be contrasted with the experimental data. The simpler EHB model was

already able to capture the stress-dependent variation of the large strain measure φ′L (which

is dominated by viscoplastic flow), so the kinematic hardening model achieves an equally

good agreement as the EHB model does with the Carbopol data. The improvement over the

EHB model comes primarily from the non-zero values of φ′M when kinematic hardening is

added to the constitutive model. Progressively larger values of φ′M at large values of σ0 and

ω are exhibited by the kinematic hardening model. This variation of φ′M is an important

aspect of the material response in LAOS. Physically, it can be related to the time-varying

nature of the Carbopol gel and its ability to exhibit viscoplastic flow, even at low stresses.

The kinematic hardening model captures this behavior through the dynamic evolution of
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FIG. 18. Contour plots of the nonlinear measures φ′M and φ′L for the KH model with the same

fitting parameters as in Fig. 16.

the back stress σback(t) with characteristic time scale tc (Eq. 31), and the modified flow rule

in Eq. 27. These features of the KH model allow the material to exhibit nonzero fluidity at

low instantaneous stresses, even though under “steady state” conditions (i.e. creep tests in

which we wait extremely long periods of time t � tc to measure an apparent viscosity) we

would have η+ →∞ and fluidity φ+ → 0. The simpler EHB model attains this steady state

instantaneously, and therefore predicts a constant (zero) value of φ′M .

A definitive way to document the improved fit of the KH model vs. to the experimental

data is by calculating the volumetric energy dissipated into the material per cycle, Ed. This

energy can be computed by evaluating the following integral:

Ed =

∫ 2π/ω

0

σγ̇dt = σ2
0J
′′
1π (32)

where the second equality follows due to the orthogonality of the Fourier terms in Eq. 7 over

the domain [0, 2π/ω]. It is well known that, for a sinusoidal forcing, the energy dissipated

within the material per cycle only depends on the first viscous Fourier coefficient (Ganeriwala

and Rotz, 1987; Kalelkar et al., 2010; Ewoldt et al., 2010). Geometrically, this parameter

Ed represents the area enclosed within the elastic Lissajous curves shown in Fig. 16. This

measure provides the starkest contrast between the EHB and KH model fits to the Carbopol

data, because for σ < σy the EHB model does not dissipate energy at all - it behaves as
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an ideal elastic solid. In Fig. 19 we evaluate contour plots of Ed(ω, σ0) and see that indeed,

the increase in Ed near σy for the EHB model is very abrupt. On the other hand, Ed

increases more gradually for both the kinematic hardening model and the microgel data. To

further emphasize this, in Fig. 19 (d) we compare experimental values of Ed for the Carbopol

microgel to predictions of the KH and EHB model with the same fitting coefficients used

in Fig. 16 at a constant frequency of ω = 5 rad/s. While the EHB model fails to predict

the energy dissipation for stress amplitudes below 80 Pa, the kinematic hardening model

shows excellent agreement with the measured values of Ed for the Carbopol even for stresses

σ0 � σy.
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FIG. 19. Contour plot of the energy dissipated per cycle (Ed) in (a), the EHB model plotted

in Fig. 11, in (b), the kinematic hardening model plotted in Fig. 16 and in (c), the Carbopol

microgel. In (d), a comparison of the predictions of both models is given with LAOStress data for

the Carbopol microgel at an imposed frequency of ω = 5 rad/s.
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V. CONCLUSIONS

The goal of this work has been to show how stress-controlled LAOS (or LAOStress) can

be used to extract meaningful nonlinear measures that quantify the response of elasto-plastic

materials to oscillatory deformations. In general these descriptive rheological measures are

not identical to prescriptive constitutive model parameters, but they are related. A further

goal has therefore been to show how these material measures can be used to develop and

assess quantitative constitutive models that can predict yield-like responses of gels and

other soft solids. To that end, we have introduced the stress-controlled LAOS framework

in Sec. III. This framework is identical to that first used by Ewoldt (2009) and Läuger and

Stettin (2010), and has been extended to include the Chebyshev coefficients cn and fn which

characterize the nonlinear compliance and fluidity of a material.

We have discussed the implications of a stress vs. strain decomposition of the material

response, and how it may be physically more meaningful for gels and soft solids to adopt the

stress-controlled approach in which strain is decomposed into elastic and plastic components.

This strain decomposition into “apparent” components γ′ and γ′′ is intimately related to the

concepts of elastic and plastic strains defined for certain classes of constitutive models. How-

ever, with more complex constitutive models, the specific relation between these apparent

strains and the corresponding parameters (γe and γp) in a model is not straightforward (i.e

they may not be equal to each other). The Chebyshev compliance and fluidity coefficients

have been defined in this work, but we have refrained from using them to quantify material

behavior for two reasons. The first reason is due to the potential differences between the

experimentally-decomposed strains (i.e. the descriptive measures γ′ and γ′′) and the consti-

tutive model strain decomposition (prescriptive measures γe and γp), and the implications

that this has for prescribing a particular constitutive behavior. Second, we are generally

interested in very large nonlinearities in the rheological fingerprint (e.g. yielding) where it

has been shown (Klein et al., 2007; Ewoldt et al., 2010; Rogers et al., 2011b) that harmon-

ics higher than n = 3 can play a significant role in the material response. As a result we

have focused our efforts on measuring and predicting the nonlinear compliances J ′M and J ′L,

and the nonlinear fluidities φ′M and φ′L which involve all the Fourier-Chebyshev coefficients.

Expressions exist for each of these nonlinear measures in terms of the higher order Fourier

compliances J ′n and J ′′n - see Eqs. 12, 14, 16, 17). We have shown that the nonlinear com-
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pliance J ′M serves as a better indicator of the intracycle elasticity of the material below the

yield stress than the equivalent strain-controlled measure, G′M , which decreases by orders

of magnitude after the material yields. A new interpretation of G′M is therefore suggested,

i.e. it measures the residual material elasticity during flow at the maximum strain rate.

The parameters J ′M and G′M are thus complements to each other but not conjugates. For

stress-controlled LAOS conditions, the value of J ′M remains relatively stable for all stress am-

plitudes and frequencies. This behavior is consistent with that of an elasto-plastic material,

in which strain is decomposed into elastic and plastic components, and elastic deformations

occur “in series” with viscoplastic deformations at all stress amplitudes. For Carbopol, the

nonlinear fluidity φ′L increases dramatically after yield due to the viscoplastic flow in the

material which occurs above the yield stress.

Based on these observations, we have introduced two constitutive models that can be used

to capture the behavior of the Carbopol microgel. The first of these models, the Elastic-

Herschel-Bulkley model (EHB), is successful at capturing the behavior of the material under

LAOS conditions at very large stress amplitudes and at very small stress amplitudes. How-

ever, this model was shown to be deficient from the perspective of the nonlinear measures

J ′M , J ′L and φ′M - specifically, it predicts constant values for all of these measures. To improve

on this shortcoming, we modified the EHB model in order to account for kinematic hard-

ening. This constitutive process involves the introduction of an evolving internal material

parameter which is defined through a nonlinear differential equation. This internal param-

eter, known as the back stress, corresponds to the location of the center of the yield surface

of the material in stress space. The dynamics introduced through this equation allow the

material to exhibit a continuous transition under LAOS from the unyielded to the yielded

regime. While the simpler EHB model exhibits a sudden change in behavior for stresses in

the vicinity of the yield stress σy, the ability of the KH model to evolve over time in a contin-

uous manner prevents this discontinuous change in behavior from occurring. The KH model

is able to capture many of the salient features of the Carbopol response - in particular, below

the yield stress it predicts a power-law growth in the instantaneous viscosity with time, a

behavior which has been documented experimentally by several groups. Above the yield

stress, the model predicts a steady state flowcurve given by the Herschel-Bulkley equation.

The corresponding yield stress at which this viscosity bifurcation occurs is easily tunable in

the model by altering the ratio of the material constants C/q = σy. The kinematic hard-
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ening model also predicts nonzero viscous dissipation within the material at stresses below

the yield stress. This is due to the ability of the model to exhibit slow viscoplastic creep at

low stresses σ < σy.

Looking beyond the present work, there are several interesting new avenues for research

that can be pursued. One potentially interesting area of work would be modifying the

kinematic hardening model to account for the more complex thixotropic behavior (Barnes,

1997) that is exhibited by some of the less “ideal” yield stress fluids (such as the bentonite

suspensions studied by Coussot et al. (2002)). There have been many examples of recent

work in which models have been proposed to account for thixotropy (Yziquel et al., 1999;

Mujumdar et al., 2002; Alexandrou et al., 2009; de Souza Mendes, 2011), and it would be of

interest to see how thixotropic behavior can be implemented into the kinematic hardening

model. These types of fluids also present new experimental challenges related to LAOS

implementation - de-structuring of thixotropic fluids may lead to long transients in the

LAOS signal which do not die out until multiple periods of oscillation have been completed.

These transients are readily visible in the Lissajous curves, but a quantitative description

will require more advances in the LAOS framework, including the use of even harmonics to

fully capture the transient responses.

Finally, it would be interesting to compare and draw analogies between some of the

microstructure modeling efforts that have been carried out on soft materials (e.g. Cous-

sot (2007)), to analogous modeling of materials that are more commonly dealt with in the

plasticity literature, such as polycrystalline metals (see Rubin and Yarin (1993) for an intro-

ductory discussion). In the present paper we have seen that the kinematic hardening model

employed in plastic deformation of metals is successful in predicting the nonlinear response

of the Carbopol microgel under cyclic loading. Thus, further comparisons with inspiration

drawn from the plasticity literature may prove insightful for rheological descriptions of soft

solids, gels and other yield stress fluids.
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Appendix A: Generalization of Kinematic Hardening Model to 3D Finite

Deformations

Both the EHB model, and the kinematic hardening model can be generalized to 3-

dimensional form, such that the constitutive models are frame invariant and satisfy the

first and second laws of thermodynamics. The nomenclature used and the approach taken

here is very similar to that taken by Gurtin et al. (2010), so readers who are interested

in additional details are advised to consult those works. Lemaitre and Chaboche (1990)

is also a good general reference for readers interested in various types of kinematic hard-

ening models. For the sake of brevity, this appendix will mostly serve to highlight some

of the important concepts of the model; Henann and Anand (2009), Anand et al. (2008)

and Ames et al. (2009) discuss more complex versions of the model that is detailed in this

appendix. Specifically, the model discussed here does not include isotropic hardening, and

is not thermo-mechanically coupled as is the case for more general models.

A central component of this generalization is the Kroner decomposition (Kroner, 1960),

in which the deformation gradient, F, is multiplicatively decomposed into elastic and plastic

components, Fe and Fp respectively.

F = FeFp (A1)

This plays the same role that the additive decomposition of Eq. 1 plays for the 1-D case.

The polar decomposition of the elastic component of the deformation gradient is as follows:

Fe = ReUe (A2)

With Re representing a rotation and Ue a stretch. The stretch Ue has the following spectral

representation:

Ue =
3∑
i=1

λeir
e
i ⊗ rei (A3)
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Where λei are the principal values and rei are the principal directions of Ue. From the stretch

Ue we can therefore define the logarithmic elastic strain (Hencky strain) which is as follows:

Ee ≡ ln Ue =
3∑
i=1

(lnλei )r
e
i ⊗ rei (A4)

The use of the logarithmic elastic strain is typically done in order to approximately capture

elastic behavior at large strains. In addition to the definition of Ee, we can define the right

(Ce) and left (Be) elastic Cauchy-Green tensors as follows:

Ce = (Fe)ᵀFe (A5)

Be = Fe(Fe)ᵀ (A6)

The left Cauchy-Green tensor is also sometimes referred to as the Finger tensor (Bird et al.,

1987; Macosko, 1994).

1. Elastic Herschel-Bulkley Model

For the simpler EHB model, elastic strains are assumed to be small, so the free energy

can be written as a function of Ee, and the following specific form is assumed:

Ψ = G|Ee|2 +
1

2
λ|trEe|2 (A7)

Eq. A7 above has introduced the parameter λ as an additional material parameter which

was not needed for the 1 dimensional case of simple shear discussed in Sec. IV. It is related

to the bulk modulus K through K = λ+ 2G/3. Eq. A7 results in the following form for the

second Piola elastic stress Te:

Te = 2GEe + λ (trEe) 1 (A8)

Where Te is defined as follows:

Te = J(Fe)−1T(Fe)−ᵀ (A9)
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Where T is the Cauchy stress and J = det(F).

The next step is to formulate a plastic flow law which determines the rate of plastic flow

given an applied stress. For the EHB model we will use a rate dependent plastic flow rule.

We begin with the plastic velocity gradient Lp which is related to Fp as follows:

Lp = Ḟp(Fp)−1 (A10)

Lp can be split into its symmetric and skew components, such that Lp = Dp + Wp. One of

the assumptions that goes into this model is that of plastic irrotationality, which assumes

Wp = 0, i.e. there is no plastic spin. We can then write the plastic stretching Dp as a

product of its magnitude, dp = |Dp|, and its direction Np = Dp/dp.

Dp = dpNp (A11)

Note that Np is the 3D tensor-valued analog of the direction np discussed in the 1D version

of the model (see Eq. 19). In order to determine Np, we assume that plastic flow is co-

directional with the stress. However, this codirectionality holds for a different projection of

the total stress, the deviatoric Mandel stress Me
0 (Gurtin et al., 2010). Thus:

Np =
Me

0

|Me
0|

(A12)

Where the Mandel stress Me is associated with an intermediate “structural” space in the

material (Gurtin et al., 2010) and is defined as:

Me = CeTe (A13)

And its deviatoric part is Me
0 = Me − 1

3
(trMe) 1. We can then define an equivalent plastic

strain rate and equivalent shear stress:

˙̄γp =
√

2dp Equivalent plastic strain rate (A14)

σ̄ =
1√
2
|Me

0| Equivalent shear stress (A15)

The presence of the
√

2 factor in Eq. A14 arises so that under simple shearing conditions,
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the equivalent plastic strain ˙̄γp is equal to the plastic strain rate γ̇p discussed for the 1D

shear case (note that conventional strain rate tensor is in rheology is typically defined as

2D). In Eq. A15, the
√

2 factor arises as a result of the von-Mises yield criterion - the factor

preserves the value of the yield stress σy when the 3D model is simulated under simple

shearing conditions. The positive, scalar valued parameters σ̄ and ˙̄γp defined above are

related through the familiar Herschel-Bulkley flow equation:

˙̄γp =

 0 if σ̄ < σy( σ̄−σy
k

)1/m
if σ̄ ≥ σy

(A16)

Due to the presence of the
√

2 factors in the equivalent plastic strain rates and equivalent

shear stress, this Herschel-Bulkley flow equation reduces to the 1D equation with identical

values of the yield stress σy and the fitting parameters k and m discussed in Sec. IV when

the material is specialized to simple shearing conditions.

2. Implementing Kinematic Hardening

In order to introduce kinematic hardening into the model, the free energy Ψ defined in

Eq. A7 is modified by adding an additional term, such that:

Ψ = G|Ee|2 +
1

2
λ|trEe|2 + Ψp(A)︸ ︷︷ ︸

defect energy

(A17)

The form of the free energy equation above involves the introduction of a defect en-

ergy, Ψp, which depends on the tensor A (which is the three-dimensional generalization of

the parameter A that was discussed in Sec. IV D). A is symmetric and unimodular (i.e.

det(A) = 1), and has the following spectral representation:

A =
3∑
i=1

aili ⊗ li (A18)

Where the li are the principal directions of A. The following simple form of the Ψp is used

to model the defect energy:

Ψp =
1

4
C
[
(ln a1)2 + (ln a2)2 + (ln a3)2

]
(A19)
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In Eq. A19 the back stress modulus C has been introduced, which is a new material pa-

rameter. Eqns A17 and A19 above result in the following equation for the back stress,

Me
back:

Me
back = C ln A (A20)

The parameter A is then defined through the following evolution equation:

Ȧ = DpA + ADp − qA(ln A)dp (A21)

In this equation we have introduced the new material constant q, which is equivalent to

the dimensionless q parameter discussed for the 1D model in Sec. IV. The value of the

parameter q determines the dynamic recovery of A. The effective stress driving the plastic

flow, Me
eff, is then given by:

Me
eff = Me

0 −Me
back (A22)

With kinematic hardening we assume that the plastic flow Dp is now codirectional with the

effective stress Me
eff, so for the directional tensor Np = Dp/dp we now have:

Np =
Me

eff

|Me
eff|

(A23)

The stress driving plastic flow in the EHB model must also be modified, to account for the

backstress, so Eq. A15 becomes:

σ̄ =
1√
2
|Me

eff| (A24)

Finally, the power-law rate-dependent flow rule is introduced, which gives the relation be-

tween σ̄ and ˙̄γp:

˙̄γp =
( σ̄
k

)1/m

(A25)

Note that this particular flow rule has eliminated the conditionality of Eq. A16, and thus

eliminated the explicit appearance of the yield stress parameter σy.
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Appendix B: Effect of Instrument Inertia on Stress-Controlled LAOS

measurements

When carrying out dynamic stress-controlled experiments on a single head rheometer such

as an ARG2, the rheometer typically controls the total torque applied, which is distributed

between the instrument geometry, and the sample. In the present work, the total torque

(which was sampled before any filtering using an auxiliary sample program on the ARG2)

was converted to the shear stress acting on the sample using an appropriate geometry factor

(2πR3/3 with R being the radius of the cone-plate geometry). For greater accuracy, one

would want to subtract any contribution of the inertial torque from the measured signal

before applying this geometry factor.

For small enough frequencies and strain amplitudes, we expect that influences from the

inertial torque can be neglected and we seek to provide a dimensionless constrain that

quantifies this expectation. The total torque T can be additively decomposed into an ‘inertia

torque’, Ti and the sample torque, Ts such that T = Ti + Ts. The inertia torque is related

to the angular orientation of the geometry, θ, and the instrument moment of inertia I as

follows:

Ti = I
d2θ

dt2
(B1)

In order to be able to neglect the effects that instrument inertia has on an experiment, it

is desired for the ratio Ti/Ts to be small. For the particular experiments carried out in this

work (stress-controlled oscillations with stress amplitude σ0 and frequency ω, in a cone and

plate geometry), one can estimate the values of Ti and Ts as follows:

Ts ∼
2σ0πR

3

3
(B2)

Ti ∼ Iω2γ0φ (B3)

Where R is the radius of the cone-plate geometry, φ is the cone angle, and γ0 is the strain

amplitude of the deformation, which naturally depends on the type of material being probed.

We define a dimensionless inertia number In which estimates the relative magnitude of the

inertia torque to the sample torque as follows:
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In =
3Iω2φγ0

2πσ0R3
(B4)

The strain amplitude of deformation cannot be determined a priori. For the present work

we can determine γ0 from the experiments presented in Fig. 8, and based on these values of

γ0, we find In < 0.05 for all the experiments. The test in Fig. 8 for which In is largest is that

where the imposed frequency is ω = 5 rad/s and the stress amplitude is 200 Pa. In order

to illustrate that the cutoff of In ≤ 0.05 is acceptable, we plot the corrected stress-strain

curve on top of the uncorrected stress strain curve in Fig. 20. As Fig. 20 shows, there is

little change in the overall shape of the Lissajous curve for this particular frequency. In

particular, the value of J ′M evaluated from the two different curves differs by less than 3 %.

However, a quantitative comparison of the measure J ′L at this particular value of ω and σ0

is rather difficult to obtain, due to a substantial amount of noise being introduced into the

corrected stress signal at higher values of σ(t).

Another way to measure the importance of inertia in a stress-controlled test is by looking

at the relative “purity” of the periodic torque wave Ts(t) imposed on the sample. Note that

for stress-controlled LAOS, the rheometer will typically impose a total torque such that

T (t) = T0 cosωt. Due to the nonlinear nature of the material response, the torsional angle

θ(t) will contain higher harmonics. As a result, Ti(t) will also contain higher harmonics, as a

consequence of the definition in Eq. B1. There is therefore no guarantee that the oscillating
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torque, Ts(t) = T (t) − Ti(t) applied to the sample will only contain a single harmonic in

its waveform. For each of the experiments presented in this work, it is possible to correct

T (t) for inertia in order to obtain the true sample torque Ts(t). An FFT of Ts(t) can then

be taken and the relative magnitude of the third harmonic to the first harmonic (T3/T1)

can be determined. This gives the LAOS experimentalist an idea of how pure the spectral

content of the stress input into the material is. In Fig. 21 we show the ratio T3/T1 for the

LAOStress measurements presented in this work. From the figure, it is apparent that the

ratio increases beyond a noise threshold (∼ 0.2%) for the highest stress amplitude, but never

increases beyond 3% at the highest frequency and stress amplitude

It is also possible to make a coarse estimate of what the limiting strain amplitude, γ0,

would be so as to determine a value of this criterion before doing experiments. For values

of σ0 below the yield stress, we expect γ0 ∼ σ0/G (i.e. the material will behave primarily as

an elastic solid). For values of σ0 above the yield stress, however, the material will deform

with a maximum shear rate (given by the Herschel-Bulkley equation) of
(σ0−σy

k

)1/m
. If we

multiply this shear rate by the period, 2π/ω, we obtain an estimate for the total accumulated

viscoplastic strain in the material. We also need to add the accumulated elastic strain to the

material as well (σ0/G), so when we add these two terms we obtain the following estimate
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for γ0 above the yield stress:

γ0 ∼
σ0

G
+

(
σ0 − σy

k

)1/m
2π

ω
(B5)

Using these estimates for the strain amplitude both below and above the yield stress, we can

modify the dimensionless inertia number defined in Eq. B4. In the absence of any knowledge

of γ0, In can then be determined as follows for a soft solid gel:

In =
3Iω2φ

2πR3G
for σ < σy (B6)

In =
3Iω2φ

2σ0πR3

(
σ0/G+

(
σ0 − σy

k

)1/m
2π

ω

)
for σ ≥ σy (B7)

A suitable upper bound constraint can then be placed on the value of In, which allows the

range of test frequencies and imposed stresses for which inertial effects are negligible to be

evaluated before stress-controlled experiments are actually performed.

Appendix C: Uniqueness and Single-Valued Properties of Strain Decomposition

We consider the case in which we have a sinusoidally imposed stress σ(t) as given in Eq. 6

(and inertial effects are negligible), with the strain γ(t) being decomposed into a Fourier

series as given in Eq. 7. Based on the Fourier decomposition of Eq. 7, we desire to find a

strain decomposition γ = γ′ + γ′′ such that γ′ is a single-valued function of stress, and γ̇′′ is

a single-valued function of stress.

1. Strain Decomposition

We propose that the following decomposition satisfies the criteria of γ′ being a single-

valued function of σ and γ̇′′ being a single-valued function of σ:

γ′(t) =
∑
n odd

J ′nσ0 cosnωt (C1)

γ′′(t) =
∑
n odd

J ′′nσ0 sinnωt (C2)
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In order to show this, we must show that if σ(t1) = σ(t2), then γ′(t1) = γ′(t2), i.e. for two

different times at which the stress is equal, the value of γ′ must be equal. For σ(t1) = σ(t2)

we must have cosωt1 = cosωt2. Due to the fact that cosine is an even function, this only

holds if:

ωt1 = −ωt2 (C3)

Using equation C3 we can obtain a relationship between the higher harmonics in equation

C1 at times t1 and t2.

cosnωt1 = cos (−nωt2) = cosnωt2 (C4)

Where the last equality follows because cosine is an even function regardless of the value of

n. As a result of equation C4, all the terms in equation C1 are the same if they are evaluated

at either t1 or t2, as long as the stress is the same at times t1 and t2. Because of this, γ′ is a

single-valued function of stress. It follows that γ̇′′ is also a single-valued function of stress,

because it consists of only cosine terms (it is the time derivative of sine terms), and the

same logic applies.

2. Uniqueness of Strain Decomposition

We now show that the strain decomposition in equations C1 and C2 is unique, in the

sense that no other strain decomposition gives an apparent elastic contribution γ′ which is

a single-valued function of the stress σ and an apparent plastic strain rate γ̇′′ which is a

single-valued function of the stress σ. In order to do this, we propose an alternative elastic

strain, γ′1. This γ′1 would have the following Fourier decomposition:

γ′1 =
∑
n odd

{anσ0 sinnωt+ bnσ0 cosnωt} (C5)

Using equation C3 we can obtain a relation between the sine terms in Eq. C5 at t1 and t2:

sinnωt1 = sin (−nωt2) = − sinnωt2 (C6)

Where the last equality follows from the odd property of the sine function. It is therefore

impossible for γ′1(t1) = γ′1(t2) unless all the bn are zero. This leaves us only nonzero an.
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Note that any choice of an will give a γ′1 which is a single-valued function of stress, however

by the properties of the strain decomposition we can obtain the viscoplastic strain through

the following:

γ′′1 = γ − γ′1 (C7)

The only way that γ̇′′1 will also be a single-valued function of stress is if an = J ′n - i.e. we

can only have sine terms in γ′′1 such that γ̇′′1 will only contain cosine terms.
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