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Abstract

Micro channel gas flows are of importance in a range Micro Electro Mechanical Systems
(MEMS). Due to the confined geometry of the channel, the mean free path of the gas can be
comparable to the characteristic length of the micro channel, leading to slip-like flow behavior
and strong diffusion-enhanced transport of mass and momentum. The Extended Navier Stokes
Equations (ENSE) have successfully been used to model the slip behavior in rarefied gas flows
as well as quantitatively predict the mass flow rate through the channel, without introducing
any ad hoc parameters. The model involves accounting for self-diffusion due to local pressure
gradients, and decomposing the total transport as the additive sum of individual convective and
diffusive terms. In this paper, we show that it is possible to obtain exact analytical solutions
to the ENSE equation set for the pressure and velocity field using the Lambert W function.
We find that diffusive contributions to the total transport are only dominant for low average
pressures and low pressure drops across the micro channel. For large inlet pressures, we show
that the expressions involving the Lambert function predict steep gradients in the pressure and
velocity localized near the channel exit. Using a limit analysis, we extract a characteristic length
for this boundary layer. Our analytical results are validated by numerical calculations as well as
experimental results available in the literature.

Keywords: Extended Navier-Stokes Equations, ENSE, Lambert W Function, Rarefied Gas
Flow, Microchannel, MEMS, Knudsen

Introduction

Micro channel gas flows have elicited much research interest in recent years [1]. Such flows are

frequently encountered in Micro Electro Mechanical Systems (MEMS) such as in thermal cooling

systems for electronic devices [2], air damping of MEMS resonators [3; 4], gas chromatograph

analyzers [5] and other applications. Theoretical understanding of macroscale fluid flows, where the

continuum approximation holds, has existed for many decades and phenomena appearing at these

∗Dedicated to Professor R. B. Bird on the occasion of his 90 birthday.
†Corresponding author: gareth@mit.edu
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length scales are well understood and described in classic textbooks [6; 7]. Micro channel flows,

however, exhibit many significant deviations from the predictions of the Classical Navier-Stokes

Equations (CNSE) used to analyze macroscale flows. It has been known from the time of Maxwell

[8] that the no-slip boundary condition can be violated in rarefied gas flows. Other deviations from

classical macroscale flows include observations of higher mass flow rates through the channel [9] and

nonlinear pressure drop along the channel [10].

These deviations from the classical results arise from rarefaction of the gas or the shrinking of

the characteristic length scales of the flow geometry so that the mean free path λ of the gas becomes

comparable to the characteristic length of the flow channel h [11]. Another important source of the

deviation of micro scale flows from CNSE predictions is the relative importance of wall effects. The

shrinking characteristic length scales of the channel lead to increasing surface to volume ratios, and

hence the nature of interaction of the wall with the gas can strongly influence the flow properties.

This is essentially a breakdown of the continuum approximation; to be able to neglect microscopic

statistical fluctuations, we need a sampling volume with a characteristic length much bigger than

the length scale h of the micro channel.

In a comprehensive overview of the first fifty years of Transport Phenomena [12], Bird highlights

as some of the present day challenges “(e) What boundary and interfacial conditions in transport

phenomena need to be clarified by use of molecular dynamics?” and “(h) What is the correct

velocity boundary condition at the tube wall when a homogeneous mixture is flowing through the

tube?”

We quantify the deviation from the continuum approximation with the help of the Knudsen

number Kn defined as

Kn =
λ

h
(1)

where h is the characteristic length of the channel, and λ is the mean free path of the gas defined

as [13]

λ =
µ

P

√
πRT

2
(2)
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Figure 1: The different regime classifications of micro channel flows based on Knudsen number Kn. Figure
is reproduced from [14].

Here µ is the viscosity of the gas, P is the pressure, R is the gas constant and T is the absolute

temperature. In order of increasing Kn, the flow characteristics may be classified as a classical

continuum flow, slip flow, transition flow or a free molecular flow [11]. Some typical values of Kn

corresponding to these regimes are shown in Figure 1, which has been adapted from Dongari et

al. [14]. Some of the earliest attempts to account for wall effects and to model the effects of slip

in rarefied gas flows were due to Maxwell [8], who modeled the wall surfaces as being intermediate

between perfectly reflecting and perfectly absorbing. Due to the roughness of the wall, a fraction σ

of the gas molecules impacting it are absorbed by the wall, and subsequently re-emitted in a diffuse

manner with a velocity distribution corresponding to a quiescent gas at that particular temperature.

The remaining fraction 1 − σ is reflected specularly. With this assumption, Maxwell showed that

the tangential slip velocity at the wall is given by

uslip =
2− σ
σ

λ
∂u

∂y
(3)

where ∂u/∂y is the velocity gradient normal to the flow direction. For high Knudsen number flows,

deviations from a first-order derivative model are observed, and hence higher order derivatives are

frequently used to model slip in micro channel flows [11; 13; 15; 16]. Extensive reviews on the topic

of slip in a micro channel are available [17].

It has been argued that using the CNSE together with the Maxwell slip velocity formulation is

largely an empirical approach to modeling micro channel gas flows [18]. Furthermore, it does not

account for local gradients in density which can create local fluxes due to self diffusion [19; 20].

A new approach has been proposed in a series of publications by Durst and co-workers (see for

example [14; 20–22]). The underlying assumption in this theory is that the pressure gradient in the

direction of the compressible flow provides an additional diffusive mode of mass transport, which
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is accounted for analytically by adding an extra term to the CNSE. One therefore eliminates the

need to include, in an ad hoc manner, the Maxwell slip velocity [14].

A treatment for the self diffusion of gases has been discussed in the landmark transport phe-

nomena text by Hirschfelder, Curtiss and Bird. [23]. They note that in addition to familiar sources

of momentum and mass diffusion that arise from concentration gradients in a multi-component sys-

tem, there is another contribution to the diffusive flux that arises from the pressure gradient itself.

The coefficients of self diffusion can be experimentally measured using, for example, the diffusion of

one isotope of a gas into another, if the molecules are sufficiently heavy (see the discussion by Slat-

tery and Bird [24]). These additional modes of transport are accounted for using a rigorous kinetic

theory approach, making the mass flux expression significantly more complicated (see, for example,

Pg. 516 of Hirschfelder et al. [23]). These additional contributions cannot be neglected when large

pressure gradients exist in a rarefied gas flow field. The Extended Navier Stokes Equations (ENSE)

proposed by Durst et al. [21] account for this mass and momentum transport due to self diffusion

by replacing the velocity in the CNSE with a total velocity, that is a sum of convective and diffusive

velocity terms.

The problem of pressure driven flow in of a compressible viscous gas through a tube is posed

as a detailed exercise (2B.9) in R.B. Bird’s second edition of Transport Phenomena [6]. Here it is

suggested that there is additional contribution to the mass flux along the channel that arises from

slip at the wall of the channel. It is suggested (based on empirical evidence) that the slip varies

inversely with the pressure in the gas (consistent with equations (2) and (3)). The general form

of the mass flux variation with pressure is sketched in a figure (Figure 2B.9 of reference [6]), and

the insightful student might ask why the sketch shows not just an augmentation in the total flow

rate through the channel but also a non-monotonic variation. To quantify and understand such

observations it is necessary to have an analytic expression for the mass flux which describes the

underlying transport phenomena.

In this paper, we provide for the first time exact analytical results obtained for micro channel gas

flows modeled using the ENSE; currently only semi-analytical or numerical solutions are typically

reported. Our presentation is intended to be didactic; we first provide a brief overview of the

formulation of the model and the relevant equations. We then present the new analytical expression

for the relationship between the total mass flux and the applied pressure difference, and discuss
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the inherent non-monotonicities and non-linearities that arise. We also compare the results with

experimental data to test their predictive ability. The utility of an analytic description of the flow

field is demonstrated by using this new formulation to understand the boundary layer structure

that can develop near the microchannel exit for sufficiently large inlet pressures. Finally, we use

this detailed analytical understanding of this canonical fluid mechanics problem to construct a new

flow state map for rarefied gas flows.

The Extended Navier Stokes Equations (ENSE)

At steady state and in the absence of any temperature gradients, the system of equations referred

to for compactness as the ENSE for a single species are given by [25]

∂(ρuTi )

∂xi
= 0 (4)

∂

∂xi

(
ρuTi u

T
i

)
= − ∂P

∂xj
− ∂

∂xi

(
τCij −

2

3
δijṁ

D
k u

C
k

)
(5)

τCij = −µ
(
∂uCi
∂xj

+
∂uCj
∂xi

)
+

2

3
µδij

∂uCk
∂xk

(6)

along with the ideal gas equation of state

ρ =
P

RT
(7)

It is assumed that the total mass transport in the extended model consists of a linear sum of con-

vective and diffusive terms. The superscripts C,D and T in the above equations refer to convective,

diffusive and total quantities respectively. The total velocity component in the i direction is given

by uTi = uCi +uDi . The subscripts i, j, k refer to orthogonal coordinate directions and take the values

1,2 or 3. The other symbols in the above equations are the local density ρ(~x), the velocity u(~x), the

local pressure P (~x), the local dynamic viscosity µ and the self diffusive mass flux in the k direction

ṁD
i = ρuDi . The Kronecker delta function is denoted by δij . The self diffusive velocity in the i

direction is given by the expression

uDi = − µ

ρP

∂P

∂xi
(8)
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This diffusive velocity uD is driven by gradients in the pressure and accounts for the Maxwellian

slip-like velocity in a natural way, rather than introducing tunable parameters such as the parameter

σ in equation (3).

In this paper we consider a rectangular micro channel of length L, width w and height h, with

h� w � L. The lubrication approximation holds under these limits [7] and, assuming steady state

flow, the ENSE simplify to [22]

∂

∂x

(
ρuT

)
= 0 (9)

∂2uT

∂y2
=

1

µ

∂P

∂x
(10)

along with the boundary conditions

uT
∣∣
y=±h = − µ

ρP

∂P

∂x
(11)

where the walls of the micro channel are located at y = ±h. These boundary conditions arise

from the fact that the no-slip boundary condition applies to the convective velocity uC at the wall

surfaces (uC = 0) so that only a diffusive flux is present locally.

Solving equation (10) for uT and employing the boundary condition (11), Adachi et al. [22]

show that

ṁT = ρuT = − ρ

2µ
(h2 − y2)

dP

dx
− µ

P

dP

dx
(12)

where ṁT is the local mass flux per unit area and the total mass flow rate ṀT through any cross

section of the channel is given by

ṀT = w

h∫
−h

ρuT dy (13)

= −2hw

(
h2P

3µRT
+
µ

P

)
dP

dx
(14)

We now proceed to find analytical expressions for the pressure field and the mass flow rate as well

as the velocity field u(x, y) in the channel. To the best of our knowledge, we present the first exact
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analytical solutions to the ENSE for flow through a rectangular micro channel. Previous approaches

have solved the integrated quantity in equation (14) numerically.

Results and Discussion

Consider the expression for the total mass flow rate ṀT derived in equation (14). Because the mass

flow rate remains constant through any arbitrary cross-section of the channel, we have dṀT /dx = 0

and we can write this expression in the form

(
h2P

3µRT
+
µ

P

)
dP

dx
= −C ′ (15)

where C ′ = ṀT /2hw is a constant of integration. This equation can be solved for P implicitly, and

we determine C ′ from the boundary conditions at the inlet and outlet of the channel P (0) = Pi and

P (L) = Po to obtain

C ′ =
1

6RT

h2

L

(
P 2
i − P 2

o +
3µ2RT

h2
ln
P 2
i

P 2
o

)
(16)

We now non-dimensionalize equation (15) using x̄ = x/L and P̄ = P/Pc where L is the length of the

micro channel and Pc is a characteristic pressure for an ideal gas given by Pc = µ
√

3RT/h. As the

pressure is increased to Pc, the mean free path given by equation (2) decreases to give a characteristic

mean-free path λc or, equivalently, a characteristic Knudsen number given by Knc = λc/h =
√
π/6

which characterizes the transition region in figure 1. Substituting these scalings into Equation (15)

and (16) results in the simpler expression

(
P̄ +

1

P̄

)
dP

dx
= −C̄ (17)

where C̄ = (L/µ)C ′. Solving this equation for the dimensionless pressure distribution along the

channel P (x) with P̄ = Pi/Pc = P̄i at x̄ = 0 and P̄ = Po/Pc = P̄o at x̄ = 1 we obtain the implicit

expression

P̄ 2
i − P̄ 2 + ln

P̄ 2
i

P̄ 2
= P̄ 2

o

(
P2 − 1 +

1

P̄ 2
o

lnP
)
x̄ (18)
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where P = Pi/Po = P̄i/P̄o is a characteristic pressure ratio for flow in the microchannel. At this

point expression (18) can be evaluated using a suitable nonlinear equation solver or root finding

algorithm; however additional insight can be gained by seeking an analytic expression for P (x).

This equation admits itself to an exact closed form analytical solution given by

P (x/L)

Pc
≡ P̄ (x) =

√
W

(
exp

[
−P 2

o

(
P2 − 1 +

1

P 2
o

lnP2

)
x̄+ P̄ 2

i + lnP 2
i

])
(19)

where W (x) is the Lambert W function defined to be the function W (x) that satisfies the equation

W (x) exp[W (x)] = x (20)

Although it may not be widely known, the Lambert W function is ubiquitous in nature and appears

in the solution of a number of mathematical as well as physical problems such as electrostatics,

population growth, enzyme kinetics and quantum mechanics. It is similar to the trigonometric

functions in the sense that it has no explicit closed form, but a very large number of physical

problems are solved with relative ease by employing it in the solution [26]. Furthermore, almost all

popular physical computing packages such as Mathematica, Matlab and Maple include full support

for the Lambert W function, and utilize efficient algorithms to calculate its value at any point in its

domain. Corless et al. [27] provide an excellent summary of the history and applications of W (x).

We may now find explicit solutions for the total mass flow rate ṀT and the velocity profile uT

by substituting equation (19) into equations (14) and (12) respectively to obtain

ṀT =
µhω

L

[
P̄ 2
i − P̄ 2

o + ln

(
P̄i
P̄o

)2
]

(21)

uT (x) = P 2
o

h
√

3RT

4L

P (x)

[1 + P 2(x)]

(
P2 − 1 +

1

P 2
o

lnP2

)(
1− y2 +

2

3P 2(x)

)
(22)

where y = y/h. We can also find the individual contributions to the total mass flux that arise from
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the diffusive velocity field uD(x) and the convective velocity field uC(x, y) from equation (8):

uD(x) = P 2
o

h
√

3RT

6L

(P2 − 1 + (1/P 2
o) lnP2

P (x)(1 + P 2(x))

)
(23)

uC(x, y) = P 2
o

h
√

3RT

4L

(
P (x)

1 + P 2(x)

)(
P2 − 1 + (1/P 2

o) lnP2
)(

1− y2 − 1

3P 2(x)

)
(24)

For a long narrow channel with h� w, the pressure gradient is unidirectional (along the channel)

and the diffusive contribution does not vary across the channel. The total velocity field is in the

micro channel is given by uT (x, y) = uC(x, y) + uD(x).

Equipped with these exact analytical solutions for the mass flow rate, the pressure field as well as

the local velocity field, we next examine the behavior of these expressions under various conditions

of inlet and outlet pressures and also compare the analytic expressions with experimental data. In

figure 2, we show the scaled pressure ∆Ps = (P̄ − P̄o)/(P̄i − P̄o) calculated using equation (19) as

a function of position along the channel x̄. The curves correspond to different values of the inlet

pressure P̄i for a fixed (small) value of the outlet pressure P o. It is observed that the nature of

the scaled pressure drop ∆P s strongly depends on the relative values of inlet and outlet pressures.

We know that in the classical case the scaled pressure along the channel varies as ∆P s = 1 − x̄,

and this linear result is independent of the inlet and outlet pressures P̄i and P̄o. Accounting for

diffusive terms makes the pressure drop highly nonlinear, and it is now a function of both P̄i and

P̄o. Moreover, for a fixed value of x̄, say x̄ = 0.5, can be noted that the value of the scaled pressure

varies non-monotonically at small values of P̄i and saturates at high values of P̄i.

This non-linear evolution of the pressure profile predicted by the ENSE is more readily evident

in the pressure gradient profiles. A closer examination of the curves in figure 2 shows the existence

of an inflection point along the profile (i.e.) although the pressure gradient along the channel is

always negative, its magnitude may vary non-monotonically. We can easily determine the pressure

gradient along the channel by differentiating equation (19) with respect to x̄ to obtain

dP (x)

dx
= −P 2

o

P (x)

2(1 + P 2(x))

(
P2 − 1 + (1/P 2

o) lnP2
)

(25)

where we have used the fact that the derivative W ′(x) of the Lambert function given in equation (20)
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Figure 2: The non-dimensional pressure P̄ (x) = P/Pc as a function of non-dimensional position x = x/L
along the micro channel analytically determined from equation (19). We observe that the pressure is a
non-monotonic function of P̄i, and saturates for high inlet pressures P̄i. Furthermore, an inflection point is
present in the curves, some of which are not readily apparent in the plots above on account of being very
close to the exit.

is given by [27]

W ′(x) =
W (x)

x(1 +W (x))
;x 6= 0. (26)

Plotting equation (25) in Figure 3 for different values of the dimensionaless inlet pressure P̄i, the

non-monotonicity in the pressure gradient is readily apparent. In fact, we analytically find the

location of this inflection point x̄i using equation (25) by setting d2P/dx2 = 0 to be

x̄i =
P̄ 2
i + lnP 2

i − 1

P 2
o(P2 − 1 + (1/P 2

o) lnP2)
(27)

and the minimum (most negative) pressure gradient in the micro channel dP/dx|x̄=x̄i , which occurs

at the inflection point, is given by

P ′min ≡
dP

dx

∣∣∣
x̄=x̄i

= −1

4

(
P̄ 2
i − P̄ 2

o + ln

(
P̄i
P̄o

)2
)

(28)

where the prime denotes differentiation with respect to x̄.

Deviations from the classical solution for the mass flow rate of a fluid through a micro channel

is a fact that has been experimentally established [1; 10; 28–30]. The mass flow rate is observed to

be higher than that predicted by the CNSE with the no-slip boundary condition. This occurs due
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Figure 3: Analytically determined pressure gradient dP/dx as a function of x̄ (equation (25)) for a fixed
value of the outlet pressure. There exists a point in the channel where the pressure gradient is most favorable
(most negative), and the magnitude of the favorable pressure gradient increases with P̄i. The location x̄ at
which this occurs is also shifted towards x̄ = 1 as the pressure is increased (cf. equation (27)).

to the appearance of the additional ‘slip-like’ velocity contribution near the boundaries of the micro

channel. This slip-like flow is modeled in the ENSE with the additional diffusive term without the

need for introducing any fitting parameters or additional material constants, and hence this model

should be able to predict the higher mass flow rate observed experimentally. Indeed, this is the case;

in figure 4 we compare experimental measurements of the mass flow rate due to Maurer et al. [29]

with the predictions of the ENSE presented in this paper (equation (21)). The values of channel

dimensions and other experimental parameters used in this prediction are the same as those in the

work of Maurer et al., and are summarized in the figure caption. We note that the the prediction is

very good over a wide range of driving pressure differences, and the analytical solutions presented

here captures the essential non-linearities and apparent slip phenomena observed in micro channel

flows at moderate Knudsen number.

A useful way of representing the overall transport efficiency of the system is in terms of a

conductance κ (i.e. the inverse of a flow channel resistance). For gas flow through a rectangular slit

the ENSE predict that the conductance is thus given by

κ ≡ ṀT

∆P
=
µhw

LPc

1

P̄i − P̄o

(
P̄ 2
i − P̄ 2

o + ln
P̄ 2
i

P̄ 2
o

)
(29)

The quantity P 2
i − P 2

o appears commonly in such problems (for example equation (29) and the

abscissa of figure 4). Additional insight can be obtained if we rewrite this expression in terms
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Figure 4: Prediction of the analytically derived solution to the ENSE compared to the experimental measure-
ments taken directly from the values reported by Maurer et al. [29]. The agreement between the prediction
and the data is good. The parameters used here are from Maurer at al. µ = 19.9× 10−6 Pa s, h = 0.6 µm,
w = 200 µm, L = 10 cm, T = 293 K. The outlet pressure was held constant at Po = 12 kPa. The black
dashed line shows the CNSE solution for the mass flux.

of an average pressure 〈P 〉 = (Pi + Po)/2 and a pressure difference ∆P = Pi − Po such that

P 2
i − P 2

o = (P i + P o)(P i − P o) = 1
2
〈P 〉
Pc
· ∆P
Pc

.

Using these identities we rewrite the conductance in terms of the average pressure 〈P 〉 of the

gas to obtain

κ =
µhw

L

(
2〈P 〉
P 2
c

+
1

〈P 〉 − Po
ln

(
2〈P 〉 − Po

Po

))
(30)

Furthermore, using equation (2), we can define a Knudsen number 〈Kn〉 based on the average inlet

pressure as

〈Kn〉 =

√
π

24

Pc
〈P 〉 (31)

In Figure 5a, we plot the conductance κ as a function of the average pressure 〈P 〉 in the micro

channel. Whereas in the CNSE, the conductance monotonically increases with 〈P 〉 (because of the

increasing density of the fluid), a distinct non-monotonicity is apparent in the case of ENSE: the

conductance of the channel initially decreases with increasing average pressure and then increases

to become indistinguishable from the classical limit. This non-monotonicity occurs due to the

added diffusion transport mechanism. At low pressure differences, diffusive contributions of the

flow resulting from the density gradient along the channel are vastly more efficient at transporting
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mass and momentum through the micro channel compared to classical convective terms. It can be

seen from figure 5(a) that the location of the minimum conductance (indicated by the symbols) is

a function of the outlet pressure Po.

10−2 10−1 100 101 102

10−16
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10−14

10−13

〈P̄ 〉

κ
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g
P

a
−
1

s−
1
]
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P̄o = 0.05

P̄o = 0.3

P̄o = 3

(a)
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Numerical solution.
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P̄o = 0.3

P̄o = 3

(b)

Figure 5: (a) The conductance κ of the micro channel as a function of the average pressure in the channel.
In contrast to the prediction in the classical case in which the conductance increases linearly with average
pressure, the CNSE predicts that the conductance varies non-monotonically with 〈P̄ 〉. (b) The Knudsen
number at minimum conductance calculated using the average pressure as a function of outlet pressure. The
Knudsen number at minimum conductance varies non-monotonically.

In Figure 5b we plot the value of 〈Kn〉 at that value of the outlet pressure for which κ is a mini-

mum. Note that we are not able to find a simple analytical solution for the value of 〈P 〉 at minimum

conductance due to the non-linearity in equation (30). We therefore determine 〈Kn〉 as a function of

the dimensionless outlet pressure P o numerically. Here we notice another non-monotonicity, and the

Knudsen number 〈Kn〉min defined using the average pressure at which minimum conductance is ob-

tained first increases with increasing outlet pressure and subsequently decreases as 〈Kn〉min ∼ P−1
o .

For larger values of P o (and hence larger 〈P 〉), the variation of conductance κ approaches the

classical Navier-Stokes case, and κ varies monotonically with 〈P 〉. Hence the average pressure at

minimum conductance equals P i ≈ P o.

We can also compare the conductance defined by equation (29) with experimental measurements

of the mass flux through a micro channel as a function of P 2
i − P 2

o . In figure 6 we plot the

experimental measurements of Maurer et al. with the analytic expression in equation (29). There

are no adjustable parameters in this expression if the inlet and outlet pressures are specified in

addition to the channel geometry. It is clear that the ENSE provide an excellent description in the
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conductance of a rarefied gas through a micro channel, including the appearance of a minimum in

the conductance at a specified value of the average pressure 〈P 〉 = (1/2)(Pi + Po) and the pressure

driving force ∆P = Pi − Po. Also shown on this plot is the CNSE solution (black dashed line), in

which 〈Kn〉 increases linearly with P o.

100 101
10−17

10−16

10−15

P̄o

κ
[k

g
P

a
−
1

s−
1
]

Measured Data (Maurer et al.)

Analytic prediction

Figure 6: Comparison of the prediction of the analytical expression obtained in the present work for the
conductance of a micro channel (equation (30)) against experimental data obtained by Maurer et al. [29].
The outlet pressure as well as fluid properties and micro channel geometry is the same as that in [29]. The
prediction is very good and closely agrees with the experimental data. The black line shows the CNSE
solution

We now turn to the velocity field uT (x, y) given by equation (22). In figure 7, we show the non-

dimensional total velocity ūT (y) = uT

µ
√

3RT/4L
at different values of x̄, for two different conditions:

(a)P̄i = 1 and (b) P̄i = 10, keeping the outlet pressure fixed at P̄o = 0.25. We observe in Figure 7a

that the velocity is non-zero at the channel walls, and this slip-like velocity arises from accounting

for self-diffusion due to local gradients in pressure. In fact, for these values of P̄i and P̄o, the diffusive

velocity contribution (given by equation (23)) is a significant proportion of the total velocity.

This picture changes when the pressure ratio P = P̄i/P̄o is increased. In figure 7b, we show

the same quantity ūT (y) with P̄i = 10 and P̄o = 0.25, corresponding to P = 40. It is immediately

observed that in this case, the convective terms in the velocity largely outweigh the diffusive terms.

In this regime the slip-like velocity is relatively unimportant; this fact has been noted by other

researchers, for example Adachi et al. [22]. The diffusive contribution to the mass flow rate is only

important if it is of the same order of magnitude as the convective contribution. For this we require

both of the independently variable pressures P̄ , P̄i and P̄o to be small. With increasing P̄i, the wall
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Figure 7: Velocity profiles in the micro channel at different locations x̄. (a) P̄i = 1 and P o = 0.25 (P = 4).
The contribution of the diffusive velocity terms is a significant proportion of the total velocity and increases
along the channel. (b) P̄i = 10 and P o = 0.25 (P = 40). In this case, there is still slip at the walls, but its
contribution to the total mass flux is negligibly small.

boundary condition begins to approach that of no-slip and the velocity profile becomes parabolic.

This is reassuring because in the limit of high pressure, the Knudsen number is small (Kn � 1;

cf. equation (2)), and microscale corrections should become relatively unimportant. However, we

also note that because of the compressibility of the gas, there is still a steady increase in the local

velocity down the channel in this case as shown in Figure 7(b). Moreover, the pressure profile along

the micro channel is still highly non-linear and differs considerably from the CNSE solution, as can

be seen from figure 2. As we show later, to approach the classical result ∆P = 1 − x, we require

both P → 1 and Pi � Pc.

To better visualize the evolution in the velocity field along the channel, we consider the quantity

U(x̄, ȳ), which we call the scaled velocity, defined as

U(x̄, ȳ) =
uT (x̄, ȳ)− uTmin

uTmax − uTmin

(32)

where uTmin and uTmax are the minimum and maximum velocities in the micro channel. It is clear

from figures 7a and 7b that the minimum and maximum velocities lie somewhere along the ȳ = ±1

and ȳ = 0 lines respectively. This is also readily seen from equation (22). Moreover, if we isolate
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the terms in equation (22) that depend on x̄ and rewrite it as

uT = ξ1
P (x)

1 + P 2(x)

(
ξ2 +

2

3P 2(x)

)
(33)

where ξ1 > 0 and ξ2 ≥ 0 are coefficients independent of x̄, and P (x) is given in terms of the

Lambert W function. We can show that uT is a strictly increasing function of x̄ (because the

pressure P (x) is a strictly decreasing function of x.). Therefore, the minimum velocity in the

channel is at (x̄ = 0, ȳ = ±1) while the maximum in velocity occurs at (x̄ = 1, ȳ = 0), which can

now easily be found for any choice of P̄i and P̄o.

Figures 8a-d show shaded plots of the scaled velocity U(x, y) as a function of dimensionless

channel coordinates. Each panel corresponds to a different value of P̄i and the value of the outlet

pressure was held to be constant at P̄o = 0.25. We observe that as the driving pressure difference

is increased, the scaled velocity increases much more steeply in the vicinity of x̄ ≈ 1. This behavior

(a) (b)

(c)

(d)

Figure 8: Magnitude of the scaled velocity U in the micro channel as a function of spatial position for
different values of inlet pressure: (a) P̄i = 0.3, (a)P̄i = 1.0, (a)P̄i = 5.0, (a)P̄i = 10 at fixed outlet pressure
P o = 0.25. For larger values of P̄i, the fluid undergoes a sudden increase in velocity in the vicinity of x̄=1.
Color scale bar shows values of U ranging from 0 to 1.
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can be rationalized from the pressure gradient profiles presented in figure 3; as P̄i is increased, the

magnitude of the pressure gradient along the channel increases rapidly. In addition, equation (27)

shows that in the limit of large pressure ratios P = P̄i/P̄o, the location of the maximum favorable

pressure gradient tends towards xi → 1. This leads to the rapid increase of the gas velocity in the

vicinity of x̄ = 1 for large P. To better visualize this sudden change in the velocity near the outlet,

in figure 9 we present line scans of the scaled centerline velocity U at different values of P̄i. The

steep increase in the scaled velocity is clearly visible. This behavior stands in stark contrast to

the classical incompressible solution, where the pressure gradient and the corresponding centerline

velocity is constant throughout the channel.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
P̄o = 0.25

x̄

U

P̄i = 0.3

P̄i = 1.0

P̄i = 5.0

P̄i = 10

Figure 9: Scaled profiles of the centerline velocity along the micro channel for different values of P̄i.
Increasing P̄i leads to a steep increase in the scaled velocity close to x̄ = 1. The red dashed line shows the
boundary layer approximation given in Table 1.

The rapid variation in the velocity field close to x ≈ 1 suggests a boundary layer analysis is

appropriate when P � 1. Through such an analysis we can extract a characteristic length scale for

this boundary layer as well as the asymptotic behavior of pressure and velocity for different limits

of P̄i and P̄o.

We begin by a consideration of equation (18) which we reproduce here for clarity

P̄ 2
i − P̄ (x)2 + ln

P̄ 2
i

P̄ 2(x)
= P̄ 2

o

(
P2 − 1 + (1/P̄ 2

o ) lnP2
)
x̄ (34)
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Differentiating this equation with respect to x̄ we obtain

P̄ (x̄) +
1

P̄ (x̄)
= −P

2
o

2

(
P2 − 1 + (1/P 2

o) lnP2
)

(35)

We now perform the variable transformation ξ = 1− x̄ and let P̄ (x̄) = P (1− ξ) = ψ(ξ). Therefore

equation (35) now becomes

(
ψ +

1

ψ

)
dψ

dξ
=
P 2
o

2

(
P2 − 1 + (1/P 2

o) lnP2
)

(36)

Note that at x = 0, ξ = 1 and ψ(1) = P o. Similarly, ψ(0) = P i. If desired a full matched asymptotic

analysis of this equation can be carried out. Here we are primarily interested in the behavior of

the pressure field in the vicinity of the exit of the channel (ξ � 1), (i.e) the inner expansion where

ψ(ξ) ≈ P o. We can consider two limits of this nonlinear equation: P o � 1 and P o � 1 depending

on how large the outlet pressure at the end of micro channel is compared to the characteristic

pressure scale Pc = µ
√

3RT/h. In the former case, equation (36) simplifies to

1

ψ

dψ

dξ
u
P 2
o

2

(
P2 − 1 + (1/P 2

o) lnP2
)

(37)

while for P o � 1 we obtain

ψ
dψ

dξ
u
P 2
o

2

(
P2 − 1 + (1/P 2

o) lnP2
)

(38)

These differential equations can be easily solved to find the limiting behavior of the pressure field

close to x = 1. These results are presented in tables 1 and 2.

We can apply a similar approximation of the governing differential equation in the vicinity of

the channel exit for the velocity field uT . First we rewrite equation (12) in non-dimensional form

and apply the same variable transformations described above to obtain

uT =
h
√

3RT

2L

[
1 +

2

3

1

ψ2

]
dψ

dξ
(39)
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P o � 1, P � 1 P o � 1, P ∼ 1

P (x) P̄o exp[(1/2)(P̄ 2
0P2 + lnP2)(1− x)] P o exp[(1/2)(P2 − 1)(1− x)]

uT (x)
h
√

3RT

6L

P 2
oP2 + lnP2

P o
exp[−1

2(P̄ 2
0P2 + lnP2)(1− x)]

h
√

3RT

6L

P2 − 1

P o
exp[−1

2(P2 − 1)(1− x)]

Table 1: Limiting expressions for pressure P (x) and velocity uT (x) for the case P o � 1.

P o � 1, P � 1 P o � 1, P ∼ 1

P (x) P o

√(
P2 +

1

P 2
o

lnP2

)
(1− x) + 1 P o

√
(P2 − 1)(1− x) + 1

uT (x)
h
√

3RT

4L

P o

(
P2 +

1

P 2
o

lnP2

)
√(
P2 +

1

P 2
o

lnP2

)
(1− x) + 1

h
√

3RT

4L

P2 − 1

P o
√

(P2 − 1)(1− x) + 1

Table 2: Limiting expressions for pressure P (x) and velocity uT (x) for the case P o � 1. Although there is
no exponential behavior in this case, when P � 1, the functional dependence of the expressions for pressure
and velocity are such that steep gradients occur near the channel exit.

which in the limits P̄0 � 1 and P̄0 � 1 simplify, respectively, to

uT u
h
√

3RT

3L

1

ψ2

dψ

dξ
(40)

and

uT u
h
√

3RT

2L

dψ

dξ
(41)

We may now substitute into these equations the asymptotic form of the pressure from tables 1

and 2, according to the relevant magnitude of P o, to find the limiting expressions for the velocity

field in the boundary layer near the exit. These results are also summarized in tables 1 and 2.

The exponential dependence of both P as well as uT on x for low outlet pressures P o � 1

immediately suggests a characteristic length scale δ for the boundary layer region given by

δ

L
∼ 1

P 2
oP2 + lnP2

=
3µ2RT

h2P 2
i + 3µ2RT ln(P 2

i /P
2
o )

(42)

For a fixed value of the outlet pressure P o, the boundary layer thickness decreases with increasing
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P i and this explains the form of the velocity profiles seen in figure 9. Equivalently, decreasing P o

also decreases the boundary layer thickness, although more slowly than increasing P i.

A different structure for the boundary layer at the exit is observed when the outlet pressure is

high (P o � 1). The compressibility of the gas can still be important and there can still be a rapid

decrease in the pressure near the exit. In this case, the pressure and velocity profiles have a square

root and an inverse square root dependence on the distance from the exit, respectively. However

the length scale of the boundary layer remains the same as that of Equation (42). The detailed

expressions for this case are given in table 2.

Conclusion

In this paper we present, for the first time, exact analytical solutions to the Extended Navier-Stokes

equations and obtain expressions for the pressure field, mass flow rate and velocity field for flow

through a rectangular micro channel. The ENSE approach models the apparent slip-like flow of

rarefied gases in micro channel geometries by accounting for mass transport due to local pressure

gradients. Using the analytical expressions derived here, the nonlinear behavior of the pressure field

and the resulting velocity field was examined in detail. The analytical expressions derived here are

able to successfully capture the anomalous mass flow rate increases observed experimentally.

Figure 10: The different flow regimes for micro channel gas flows. Of note is the boundary layer flow
regime, in which steep gradients in the pressure field as well as velocity field are localized in the vicinity of
the channel exit.

The ability to obtain an analytic expression for the pressure profile P (x) along the channel (19)
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in terms of the Lambert W function also helps us construct a more detailed version of the regime

map that was shown schematically in Figure 1. This new two dimensional map is best represented

in terms of the pressure ratio P = Pi/Po = P i/P o that is driving the flow and either the average

pressure 〈P 〉 = (1/2)(Pi + Po) in the channel or the scaled outlet pressure P o = Po/Pc, each of

which characterizes the thermodynamic state of the gas and the Knudsen number in the channel.

We use the latter representation to construct Figure 10. The two dimensional velocity profile and

the pressure profile along the channel are described by equations (19) and (22) for this entire space.

For large outlet pressures (Po � Pc) and small pressure drops (P ≈ 1), the ENSE for compressible

viscous flow at moderate Knudsen numbers collapse to the classical Navier-Stokes equations. For

low average pressures (corresponding to high Knudsen number) and small pressure differences,

the flow approaches the Knudsen regime in which ballistic transport dominates. To describe this

regime requires the solution of the Boltzmann equation using appropriate numerical techniques

which depend on the Knudsen number range of interest [13].

As the pressure drop along the channel increases (P � 1), the flow develops a boundary layer

structure in which the largest velocity changes occur in a thin region of width δ near the channel

exit. The specific form of the pressure profile or centerline velocity profile in this boundary layer

regime depends on the magnitude of the outlet pressure Po (compared to the characteristic value

Pc). The results for both Po � Pc and Po � Pc are given in Tables 1 and 2 respectively. For

extremely high pressure ratios, additional effects such as inertial acceleration and viscous heating

may further modify the velocity field near the exit. The framework and methodology for dealing

with such transport effects have been considered by Bird and colleagues in numerous publications

(see for example [6; 12; 23]) but are beyond the scope of this work.
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