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Geometry mediated friction reduction in Taylor-Couette flow
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Periodic surface microtextures of different shapes such as V grooves, semicircular
grooves, or rectangular grooves have been studied under laminar and turbulent flow
conditions to offer guides for designing optimized low-friction surfaces. In this work
we investigate the efficacy of periodic streamwise-aligned surface features in reducing
the torque exerted on a steadily rotating cylinder in Taylor-Couette flow. Using three-
dimensional printed riblet-textured rotors and a bespoke Taylor-Couette cell, which can
be mounted on a controlled stress rheometer, we measure the evolution in the torque
acting on the inner rotor as a function of three different dimensionless parameters:
(i) the Reynolds number characterizing the flow, (ii) the sharpness of the riblets, as defined
by their aspect ratio (height to wavelength), and (iii) the axial scale of the riblets with
respect to the size of the overall Taylor-Couette cell (the ratio of the riblet wavelength to
the gap of the Taylor-Couette cell). Our experimental results in the laminar viscous flow
regime show a reduction in torque up to 10% over a wide range of Reynolds numbers
that is a nonmonotonic function of the aspect ratio of the grooves and independent of
Red (the gap-based Reynolds number). However, after the transition to the Taylor vortex
regime, the modification in torque also becomes a function of the Reynolds number while
remaining a nonmonotonic function of the aspect ratio. Using finite-volume simulation of
the three-dimensional swirling flow in the annular gap, we discuss the kinematic changes
to the Taylor-Couette flow in the presence of the riblets compared to the case of smooth
rotors and compute the resulting torque reduction as a function of the parameter space
defined above. Good agreement between experiments and computational predictions is
found for both azimuthal Couette flow and the Taylor vortex regime.
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I. INTRODUCTION

Inspired by the riblets on the denticles of fast swimming shark species, drag reduction using
riblet surfaces is one of several passive drag-reduction methods in which periodic microscale (or
milliscale) grooves aligned in the flow direction are used to tune the net frictional drag force acting
on the surfaces [1]. Experiments by Walsh and Lindemann have shown up to 8% reduction in the
viscous drag of flat plates in wind tunnel experiments. They used V-groove and semicircular riblets
to show that the drag reduction was a function of the shape of the riblets as well as the wavelength
and amplitude of the riblets [1–3]. Hooshmand et al. also have reported a maximum of 7% in
drag reduction in measurements of turbulent boundary layers over a V-groove riblet surface with a
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height-to-spacing ratio of 0.5 [4]. Nakao has reported up to 8% reduction in the frictional resistance
in pipe flow, using axially aligned V-groove riblets with spacing of between 0.71 and 2.04 mm [5].

The effect of riblets on frictional drag reduction has also been considered in laminar flows [6–9]:
Djenidi et al. showed 1–3 % reduction with V grooves of spacing of 1 mm and heights of 0.4–2 mm
in laminar boundary layers [7]. The primary mechanism of the reduction in laminar flow has been
identified to be the flow retardation experienced inside the grooves that results in an increase in the
thickness of the boundary layer [6–9]. This mechanism has also been observed in turbulent flows
[4,8,10,11]. Using finite-volume simulations of the developing laminar boundary layer flow over
sinusoidal riblets, we have recently shown that viscous drag reduction indeed depends on the local
riblet geometry but also on the overall length of the riblet surface under study, because the kinematic
features of the complex three-dimensional flow near the riblets evolve along the plate [12–14].

Fully developed Taylor-Couette flow (between two concentric cylinders), however, is a canonical
internal flow which is not affected by entrance or exit effects. Consequently, the Taylor-Couette
geometry [15–17] has been extensively used for exploring the levels of drag reduction that can
be achieved using a number of different passive and active methods such as riblets [18,19],
bubbles [20,21], liquid infused surfaces [22], and textured superhydrophobic surfaces that support
a stable plastron (air film) [23]. Hall and Joseph used riblets with a wavelength of 114 μm and
height (amplitude A) to wavelength (λ) ratio of unity on the inner cylinder of a Taylor-Couette
cell and were able to observe up to 5.1% reduction in drag [18]. Greidanus et al. [19] used a
Taylor-Couette cell and a ribbed rotor with a wavelength of 0.012 times the gap between the
cylinders and amplitude-to-wavelength ratio of 0.46 to study the reduction in the shear stress acting
on the cylinder surface over a range of Reynolds numbers 103 < Res < 105, where the Reynolds
number was defined as a function of the combination of the rotation rates of both the inner and
outer cylinders. They were able to observe a reduction in the shear stress similar to the drag
reduction reported previously by Bechert et al. [24] in a channel flow setting, as well as those
reported by Hall and Joseph [18]. Zhu et al. also performed a set of direct numerical simulations to
understand changes in turbulent Taylor-Couette flow in the presence of riblets [25]. They reported
that the presence of the riblets in the Taylor-Couette flow enhanced the transport of momentum
through plume ejections that occurred near the tip of the riblets. In their calculations, the riblet
surfaces increased the value of the integrated torque acting on the cylindrical rotor compared with
the smooth baseline case. However, they also foresaw the possibility of a reduction in torque, if
there were no plume ejections from the tips and the grooves acted to impede the Taylor vortices
[25].

More recently, Rosenberg et al. used a Taylor-Couette setup with a radius ratio of Ri/Ro = 0.93,
consisting of a rotating outer cylinder and a fixed inner cylinder patterned with liquid-infused
streamwise grooves, to study drag reduction using liquid-infused hydrophobic surfaces. Experi-
ments over a range of Reynolds numbers spanning 6000 < Red < 9000 showed a maximum drag
reduction of 14%. These liquid-infused surfaces consisted of V-groove textures on the inner cylinder
with spacing of 100 μm and height of about 80 μm which were filled with various low-viscosity
water-immiscible oils [22].

In the present paper we use the Taylor-Couette geometry, specifically in the Couette flow (CF)
and the Taylor vortex flow (TVF) regimes [15], to investigate changes in the frictional torque exerted
on the inner cylinder as a function of the speed of rotation when the surface texture of the inner
cylinder is varied to introduce streamwise V-groove riblets. First, in Sec. II, we briefly review
theoretical expressions for the velocity field and torque exerted during Couette flow, as well as
describing how the riblets are added to the flow geometry using rapid prototyping techniques. The
experimental configuration of the test cell is discussed in Sec. III and subsequently the results of
experiments in the CF regime are presented in Sec. IV and compared with axisymmetric periodic
simulations of the swirling flow near the riblets in Sec. IV A. In Sec. IV B we discuss the more
complex three-dimensional changes to the local kinematics induced by riblet textures in the TVF
regime plus the resulting changes in the torque as a function of the geometry of the V grooves
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and again we compare our measurements with time-dependent, three-dimensional viscous flow
simulations.

II. TAYLOR-COUETTE FLOW AND RIBLETS: BACKGROUND AND THEORY

Taylor-Couette flow is the generic name given to the flow generated between two concentric
rotating cylinders; in the most general form, both cylinders can rotate independently. Depending
on the directions that the cylinders rotate with respect to each other, their relative speeds, and the
geometry of the cell, various types of flows and instabilities can be observed and have been reported
in the literature using phase maps as a function of the two independent Reynolds numbers that can
be defined based on the inner and outer cylinder radii [15,26]. If the radii and angular velocities
of the inner and the outer cylinders are Ri, �i, Ro, and �o, respectively, then the Reynolds number
for the flow, based on the velocity of the inner and outer cylinders, and the gap size (d = Ro −
Ri) are defined as Red,i = ρRi�i(Ro − Ri )/μ and Red,o = ρRo�o(Ro − Ri )/μ. In addition to the
Reynolds numbers which characterize the dynamics of the flow, two purely geometric dimensionless
groups are used to define the geometry of the cell. The radius ratio η = Ri/Ro offers a measure of
the curvature of the Taylor-Couette cell and the dimensionless length � = L/(Ro − Ri ) defines the
number of Taylor vortices that are established in the annular gap, where L is the axial height of the
cell. In the earlier literature this parameter is also often referred to as the aspect ratio (of the TC
cell); however, to avoid confusion with the aspect ratio of the riblets introduced later, for clarity we
refer to � as the length-to-gap ratio. In the ideal Taylor-Couette flow, � → ∞. To take the effects
of streamline curvature and the fluid inertia into account, sometimes instead of a Reynolds number
it is convenient to define the Taylor number Ta = 2(1 − η)/(1 + η)Re2

d,i [27]. In the present study,
we use the Taylor number to extract the critical transition point between the CF and TVF regimes
from the table in Ref. [27].

In the present work we focus on the case where only one of the cylinders is rotating at a time.
Since the test cell used in this work is attached to a stress-controlled rheometer (discussed later), we
can readily impose a torque to the inner cylinder and then measure the resulting angular velocity.
Alternatively, one can extend this method to use a strain-controlled rheometer in which an angular
velocity �o is imposed on the outer cylinder while the resulting torque is measured on the inner
cylinder. Therefore, out of the wide variety of possible configurations for this flow, the case of
a rotating inner cylinder (finite Red,i) with a fixed outer cylinder (Red,o = 0) and the case of a
rotating outer cylinder (finite Red,o) with a stationary inner cylinder (Red,i = 0) can most easily be
employed.

These two cases become identical at low Reynolds numbers and small gaps (d/Ri � 1 or η → 1)
and both configurations are commonly used in rheometric characterization [28]. However, at suffi-
ciently large Reynolds numbers, the case with a rotating inner cylinder (finite Red,i) and a stationary
outer cylinder experiences centrifugal instabilities [15,26,29–31] that result in a sequence of flow
transitions from laminar CF to TVF, followed at higher Reynolds number by wavy vortex flow
(WVF), then turbulent Taylor vortices, and ultimately the development of featureless turbulence.
On the other hand, when only the outer cylinder is rotating, no instability is observed until the
transition from laminar to featureless turbulent flow occurs. In the laminar CF regime when only the
inner cylinder is rotating, the tangential velocity profile can be written in the form

vφ

Ri�i
= η

1 − η2

(
Ro

r
− r

Ro

)
. (1)

When only the inner cylinder is rotating the magnitude of the shear strain rate at the inner cylinder
(at r = Ri) is γ̇rφ = γ̇φr = 2�i/(1 − η2). Thus, for a Newtonian fluid, the only nonzero components
of the deviatoric stress tensor acting on the inner cylinder (and thus the magnitude of the traction
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vector at the wall) can be written as

τw,0 = τrφ = τφr = 2μ�i

1 − η2
. (2)

On a smooth cylindrical rotor with wall radius located at rw = Ri the magnitude of the viscous
circumferential force and the total torque acting about the axis of rotation are then found as

Fφ,0 = 2μ

1 − η2
�i(2πRiL) (3)

and

T 0 = 2μ

1 − η2
�i

(
2πR2

i L
) = 4πν2ρL

η

(1 − η2)(1 − η)
Red,i. (4)

In Eq. (4) the frictional torque is rearranged as a product of a dimensional prefactor, a dimensionless
group based on the radius ratio (η = Ri/Ro), and the Reynolds number of the flow. It is thus common
to nondimensionalize the total torque by the prefactor 4πρν2L and define the dimensionless torque
as G = T /4πρν2L [32,33]. For the case of a smooth rotor in the laminar regime the dimensionless
torque can then be compactly written as

G0 = η

[(1 − η2)(1 − η)]
Red,i. (5)

Since in the present work we only examine the case where the inner cylinder is rotating, from
this point forward the Reynolds number (denoted for simplicity by Red ) will be the Reynolds
number using the velocity (vi = �iRi) of the inner cylinder. For the case of nonsmooth rotors, after
computing the stress tensor τ and then calculating the traction vector τw = τ(r = Ri, φ, z) · nw on
the inner cylinder, we can write quite generally

Fφ =
∫

Sw

τw,φdSw =
∫ L

0
τw,φ2πrwdz, (6)

T =
∫

Sw

[rw × τw]dSw =
∫ L

0
[rw × τw]2πrwdz, (7)

where rw(z) is the local vector determining the position of the wall (with magnitude rw) and τw,φ

is the meridional component of τw (see Eq. (13) below). This general form enables us to calculate
the torque acting on an arbitrary textured or untextured rotor. For the case of periodic streamwise
riblets aligned in the circumferential direction, the local vector rw(z) is only a function of the axial
position z. The resulting torque obtained from a numerical simulation or a rheometric measurement
with a textured rotor may be larger or smaller than the value given by Eq. (4). Thus the reference
torque T0 [defined in Eq. (4)] can be used to calibrate a specific test cell and then used to assess drag
reduction (or increase) associated with the addition of textured features by evaluating the general
expression given in Eq. (7) and comparing the value with Eq. (4).

When the inner rotor is covered with riblets aligned in the circumferential (flow) direction and
covering the entire axial length of the rotor, we need to define additional dimensionless parameters
that characterize the dimensions of the riblets. In the present work we focus on V grooves, which are
the simplest riblet geometry. Figure 1(b) shows a schematic of the cross section of a Taylor-Couette
cell with streamwise V-shaped riblets on the inner rotor. Two parameters fully define the shape of
the riblets: the axial wavelength or spacing of the riblets, here denoted by λ, and the amplitude of
the riblets A [Fig. 1(b)]. In this work the dimensions of the riblets are chosen in a way that A < Ri

and λ < Ri.
As a measure of the sharpness of the V groove, we use the dimensionless aspect ratio R, defined

as R = A/(λ/2) = tan θ , to be consistent with our previous works [12,13]. Here θ is the side angle
of the V groove as shown in Fig. 1(b). Note that for a smooth rotor R = 0 and the radius of the wall
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FIG. 1. (a) Schematic of a Taylor-Couette cell with a riblet-covered inner rotor (red) and smooth stator
(green). The inner radius Ri here corresponds to the distance from the center of the coordinate system to the
farthest point on the riblets (riblet peaks) and Ro is the radius of the outer cylinder. (b) Enlarged schematic
of the riblet geometry on the wall showing the inner and outer radii Ri and Ro as well as the geometry of the
riblets. The blue shaded region corresponds to the fluid domain.

on the inner cylinder is rw = Ri for every axial location z. For the case of the riblet-covered inner
rotor, the total torque acting on the rotor can be calculated using Eq. (7); however, rw is no longer
a constant and varies in the axial direction. For the case of periodic V-groove riblets we have rw =
Ri − Rz for 0 � z � λ/2 and due to symmetry about the line z = λ/2 we have rw = Ri − R(λ − z)
for λ/2 � z � λ.

Due to the closed nature of the streamlines of the flow generated between the two cylinders,
this flow is always spatially fully developed without the additional complicating issues relating to
Reynolds-number—dependent entrance lengths (as seen in measurements and simulations of pipe
or channel flows) [12]. To nondimensionalize the wavelength of the riblets, we use the gap spacing
to give λ/d . This serves as a connection between the riblets’ dimensions and the general dimensions
of the Taylor-Couette problem. Unlike a boundary layer flow in which the streamwise location along
the plate plays an important role and is used for nondimensionalizing the wavelength [12], here the
direction of the viscous diffusion in the radial direction (i.e., across the gap) is the more appropriate
length scale to be used. Note that using the definition of the radius ratio η = Ri/Ro, the ratio λ/d
can also easily be transformed to λ/Ri = λ/d[(1 − η)/η] if desired.

III. EXPERIMENTAL SETUP

A bespoke wide-gap Taylor-Couette cell with a radius ratio of η = 0.63 was designed and built
for this work. An image of the test cell is shown in Fig. 2(a). The fixed stator is machined using
a computer numerical control (CNC) mill (with a precision of approximately 100 μm) and sits
on the fixed Peltier plate of a stress-controlled rheometer (TA Instruments AR-G2). Streamwise-
aligned riblet-covered rotors with V grooves were three-dimensional (3D) printed using a
Form 1+ 3D printer and standard resins. The fixed cell and the rotors all have a radius ratio of η =
0.63 with Ri = 14 mm, Ro = 22.23 mm, and L = 42 mm corresponding to a length-to-gap ratio of
� = 5.1. The riblets of the rotors are aligned in the circumferential flow direction and they are
printed with three different wavelengths of λ = 1, 2, and 3 mm and with three different aspect
ratios of 0.58, 1, and 1.73 corresponding to side angles of θ = 30◦, 45◦, and 60◦, respectively.
This corresponds to nine different rotors plus one additional smooth rotor (R = 0). (The maximum
available resolution in the specifications of the Form 1+ printer is 300 μm and attempts in printing
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FIG. 2. (a) Configuration of the custom-designed Taylor-Couette cell used in this study. The Taylor-Couette
cell is mounted on the Peltier base of a stress-controlled rheometer (TA Instruments AR-G2). (b) 3D printed
riblet-covered rotors with different wavelengths λ = 1, 2, and 3 mm (R = 1) and aspect ratios R = 0.58, 1,
and 1.73 (for fixed wavelength λ = 2 mm).

riblet-covered rotors with a side angle larger than 70◦ were not successful.) The design of the rotors
includes a hole at the top of the central shaft which is tapped after the printing process to match
the threads at the end of the draw rod located inside the rheometer spindle and allows for the rotors
to be mounted and aligned concentrically to the rheometer. For more details regarding the test cell
dimensions, precision, and assembly see [14].

To keep the reference flow field outside the riblets as similar as possible to its smooth counterpart,
here we place the peak of the riblets at Ri corresponding to the radius of the smooth rotor and the
valley of the riblets is located at Ri − A. This geometric choice ensures that in the TVF regime the
smooth and riblet-covered cases have the same number of vortex pairs, as will be shown in Sec. IV B.
Other variations in the geometric choices for the placement of textures can be hypothesized to have
an effect on the transition between flow types as well as the flow dynamics, but is beyond the scope
of this investigation.

After mounting to the freely rotating spindle of the rheometer, the angular velocity and torque
on the inner rotor are measured using contactless sensors located in the rheometer head. The overall
assembled Taylor-Couette cell and a rotor as attached to the rheometer spindle are shown in Fig. 2(a)
and a selection of the 3D printed rotors are shown in Fig. 2(b).

In all of the experiments the torque was varied over a range of 0 < T < 800 μN m and the
corresponding angular velocity (over the range of 1 � �i � 120 rad/s) was recorded for both
smooth and riblet-covered rotors. The procedure used in the experiment consists of a series of “peak
hold” steps in which the rheometer is set to apply a fixed torque for a duration of 120 s while the
rotation rate of the inner rotor is measured over 12 increments of 10 s each. To remove the transient
effect of the motor startup at the very beginning of the procedure, the first peak hold step is repeated
two times and the first one is ignored. To cover a wider range of Reynolds numbers, the viscosity
of the working fluid was also adjusted by using different mixtures of glycerol and deionized (DI)
water. The torque and velocity results were then extracted and transformed to Reynolds number
and dimensionless torque using the definitions in Sec. II for additional analysis. The location of the
transition from CF to TVF is identified using the slope of the dimensionless torque as a function of
the Reynolds number and additional discussion can be found in the Supplemental Material [34].
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FIG. 3. (a) Schematic of the geometry of the Taylor-Couette setup with closed bottom gap offset by height
hb. (b) Schematic of the torsional flow between the stationary bottom of the Taylor-Couette cell and the bottom
of the rotor. (c) Calibration plot, showing the error as defined in Eq. (9) as a function of the bottom gap height
hb at a fixed Reynolds number Red = 4.

Calibrating the effect of the closed ends

The most common experimental imperfection in any Taylor-Couette setup arises from the added
torque arising due to the no-slip boundary condition acting at the bottom enclosure of the cell and
the bottom of the rotor. Depending on the specifics of the test configuration used, similar conditions
can also arise at the top of the cell [28].

In the present setup, the rotors are connected to the head of the rheometer through the spindle
and are immersed in the fluid inside the Taylor-Couette cell as shown in Fig. 3(a). The rotor does
not come into contact with the bottom of the cell but is axially offset by a distance hb. As shown in
Fig. 3(a), while the Taylor-Couette cell has a top plate, the opening of this plate has a diameter larger
than the diameter of the rotors used. Therefore, the top of the rotor is only in contact with fluid. The
shear-free nature of the resulting boundary condition means negligible additional frictional effect is
contributed from the top of the rotor.

At the closed bottom of the Taylor-Couette cell the additional torque from the torsional shearing
flow induced between the rotor and stator leads to a systematic deviation of the torque above
the values calculated from creeping flow theory given in Eqs. (4) and (7). We decompose the
experimentally measured torque (denoted by Texpt) into two combinations Texpt = T0 + Tcor, i.e.,
the theoretical part, given by Eq. (4), and a correction term Tcor, which is expected to vary with the
rotor size.

Different methods can be employed to find Tcor. For example, Rosenberg et al. first make their
measurements using a Taylor-Couette cell of η = 0.93 and � = 40 (with a textured, fixed inner
rotor and rotating outer cylinder) completely filled with fluid (over a range of 1500 < Red < 9000)
corresponding to the total measured torque Texpt. Then they repeat the experiments, with the
same Taylor-Couette cell, but this time only partially filled with fluid up to the bottom of the
rotor to determine the end correction Tcor. They then subtract this result from the original torque
measurements Texpt to find the true torque in the absence of end effects [22].

Here, to find the correction term Tcor, we model the additional effect of the viscous flow between
the bottom of the Taylor-Couette cell and the bottom of the rotor as a torsional shear flow between
two parallel plates, as shown in the schematic in Fig. 3(b). Therefore, this correction term can be
analytically calculated and written as [28]

Tcor (hb) = πR3
i μ

2

(
�iRi

hb

)
. (8)

For a Taylor-Couette cell with a fixed geometry, the term Tcor is a function of the bottom gap
separation, denoted by hb. Now with Eq. (8), one can calibrate the experimental setup for the gap
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FIG. 4. Results of reduction in torque measured for riblet-covered rotors compared with smooth rotors as
a function of the Reynolds number and λ/d for (a) R = 0.58, (b) R = 1.00, and (c) R = 1.73.

separation hb that accounts for the equality Texpt = T0 + Tcor. In the calibration, we use a mixture of
75% glycerol with 25% DI water at a small fixed Reynolds number of Red = 4 and the torque on
the inner rotor is measured while changing the bottom gap hb and then the results are compared with
the calculated torque using T0 + Tcor. The difference between the measured and calculated torques
define the percentage of extra stress arising from the end,

E (hb) = Texpt − (T0 + Tcor )

T0 + Tcor
× 100, (9)

as a function of the gap height hb and the results are shown in Fig. 3(c). As shown in the figure, a
bottom gap separation of hb = 520 μm gives almost no error (0.02%) and hence this gap height has
been held constant and is used for the rest of the measurements. For the range of 3 < Red < 60 the
L∞ norm of the error for the measurements shown later [in Fig. SI1(a) in the Supplemental Material
[34]] is found to be 0.9% and for 60 < Red < 80, which is in the transition region, the norm of the
error increases with Red but does not exceed 3.5%.

IV. EXPERIMENTAL RESULTS

Since we are interested in understanding the effects of the riblet geometry on the changes in the
total frictional torque acting on the inner cylinder, our results are reported in the form of net changes
in torque as a function of the various dimensionless variables introduced above. First, we summarize
the results of all experiments over a range of Reynolds numbers of 4 < Red < 1000 in Fig. 4. Here
the percentage changes in torque are defined as


G

G0
= G − G0

G0
× 100, (10)

where G is the nondimensional torque measured for the riblet-covered rotors and corrected using
Eq. (8) and G0 is the nondimensional torque exerted on the corresponding smooth rotor, also
after end correction [see Fig. SI1(a) in the Supplemental Material [34]]. The results are presented
as a function of the measured Reynolds number Red , the aspect ratio R of the riblets, and the
dimensionless wavelength λ/d .

The vertical dashed line shows the location of the theoretical transition point Recrit = 74 to TVF.
The horizontal dashed line shows a baseline corresponding to no net change in torque. Based on
the definition of the torque change in Eq. (10), a negative torque change (
G < 0) corresponds
to a frictional torque reduction and a positive torque change corresponds to an increase in the
frictional torque acting on the grooved rotor. Each experiment was repeated at least three times
to confirm repeatability as well as to obtain the standard deviation (error bars) shown in the
figures. The data reported between Reynolds numbers of 4 < Red < 105 were measured using a
working fluid composed of 75% by volume glycerol and 25% DI water. This choice was guided
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by the reports of previous experiments with millimeter-sized riblets [24,35] where instead of
water, oil (with a larger kinematic viscosity) was used. Additional discussion can be found in
the Supplemental Material [34]. Because of the sensitivity of the viscosity to composition, the
dynamic viscosity of the mixture was remeasured (before and after each test, to adjust for any
possible viscous heating or change in temperature) and the mean of the experimental value was
subsequently used for the data analysis. In addition, it can be shown that the Nahme-Griffith number
comparing viscous heating arising from shear flow in the gap and radial heat conduction is always
smaller than Na � 0.023 (i.e., much smaller than unity) and thus has no effect on the results.
More information can be found in the Supplemental Material [34]. The range of data between
100 < Red < 1000 was measured using a working fluid with 50% by volume of glycerol and
50% DI water to avoid air entrapment next to the rotating shaft (additional discussion is in the
Supplemental Material [34]) and again for each test the viscosity of the fluid was measured and
used for the analysis.

A. Cylindrical Couette flow regime

In a laminar steady unidirectional flow (CF) in which only the inner cylinder is rotating, prior
to transition to TVF, the velocity profile is expected to only be a function of the geometry of the
Taylor-Couette cell and not a function of the Reynolds number [Eq. (1)]. A similar invariance is
expected even in the presence of riblets and therefore it is expected that the changes in the torque
induced by the riblets will not be a function of the Reynolds number prior to transition to TVF.
Figure 4 indeed shows that before exceeding the critical Reynolds number, the changes in the torque
are nearly constant with respect to Red . While all cases show a torque reduction, the change in
torque is only dependent on changes in the riblet geometry and not on the dynamics of the flow (for
Red < Recrit).

To confirm this experimental observation, axisymmetric periodic models of a single riblet in a
Taylor-Couette geometry with the same wavelength λ/d and a range of aspect ratios 0 < R < 2.5
were created and numerical simulations were performed using the OpenFOAM finite-volume solver.
We used the SIMPLE algorithm to compute the velocity field for steady-state axisymmetric Taylor-
Couette flow with periodic boundary conditions at z = 0 and z = λ. We calculated the changes in
torque for a range of 0 < R < 2.5 and λ/d values similar to those used in the experiments. To
compare the effect of changes in the Reynolds number, two cases with Red = 23 and 58 were mod-
eled. In the corresponding sets of experiments up to 10% torque reduction was observed in the CF
regime. As seen in Fig. 5, the measured and calculated changes in torque are the same for both values
of the Reynolds number computed as long as the dimensionless variables characterizing the riblet
geometry are kept constant (as also seen in Fig. 4). However, varying the geometry of the riblets
by either changing the R or changing λ/d has a direct effect on the frictional torque acting on the
rotor.

We first consider the case where the wavelength of the riblets is kept constant and the amplitude
of the riblets is varied (changing R). We replot the results extracted from Fig. 4 at Red = 23 and
58 as shown in Figs. 5(a)–5(c). It is clear that for a constant value of λ/d the change in torque is a
nonmonotonic function of the aspect ratio R of the riblets. The maximum torque reduction happens
at an intermediate aspect ratio which varies with the wavelength. In addition, as the wavelength λ/d
is increased, a wider range of aspect ratios offers torque reduction.

Since the design of the riblets result in the valley walls of the entire groove geometry having
a moment arm slightly smaller than Ri as shown in Fig. 1(b), using the computational results, we
also present the changes in the circumferential force exerted on the rotor compared to the case
of the smooth rotor as shown in Fig. 5(d). While the magnitude of the moment arm rw(z) along
the riblet-covered rotors is always lower than or equal to the case of the smooth rotor, Fig. 5(d)
confirms that the total frictional torque reduction achieved is only partially due to the reduction of
the local moment arm and additional contributions arise from changes to the local flow near the
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FIG. 5. Numerical calculation, theoretical prediction, and experimental measurements of the change in
torque 
G for Red = 23 and Red = 58 as a function of the riblet aspect ratio R for (a) λ/d = 0.12, (b) λ/d =
0.24, and (c) λ/d = 0.36. (d) Changes in circumferential force exerted on the rotor of a Taylor-Couette cell
with η = 0.63 as a function of the aspect ratio of the riblets with λ/d = 0.12, 0.24, and 0.36.

riblets. Further discussion on the choices for the reference smooth rotor used for comparison can be
found in the Supplemental Material [34].

In the limit of very shallow riblets, i.e., 2A/Ri � 1, we can employ an asymptotic expansion of
the velocity profile along with a domain perturbation analysis to theoretically calculate the changes
in torque due to the riblet surfaces which can be written as


G

G0

∼= −1

2
R

(
λ

d

)(
1

η(1 + η)

)
+ O

(
R2

(
λ

Ri

)2)
+ · · · . (11)

Details of the analysis can be found in Appendix A and [14]. This theoretical prediction is shown
with the dashed blue line in Figs. 5(a)–5(c) for η = 0.63. As can be seen in the figures, this
asymptotic result captures the initial slope in the variation of 
G/G0 as R → 0 for all three cases of
λ/d = 0.12, 0.24, and 0.36. Also, as expected, Eq. (11) confirms that the riblet-induced changes in
torque during steady CF are independent of the Reynolds number. However, at larger aspect ratios
(R > 0.1) the asymptotic theory fails to predict the progressive torque increase (i.e., nonmonotonic
behavior of the changes in torque) seen from both the numerical and experimental results at high R.

The nonmonotonic behavior of the change in frictional torque as a function of the aspect ratio
that is documented in Figs. 5(a)–5(c) and 12(a) can be examined in more detail by considering the
component of the traction vector (τw = τ · nw) along the wall of the inner rotating cylinder. When
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FIG. 6. Distribution of shear stress components (a) τrφ and (b) τzφ normalized by the wall shear stress in
the case of a smooth rotor (τw,0 = τrφ,0 = τφr,0) as a function of the axial location on the riblet surface with
λ/d = 0.12 and R = 1, computed at Red = 58.

the riblets are present, the normal vector to the wall nw can be written as

nw = [cos θ 0 − sin θ ]T =
[

1√
1 + R2

0 − R√
1 + R2

]T

. (12)

For a smooth rotor with R = 0 the wall normal reduces back to nw = er as expected. Using this
expression, the component of the traction vector acting in the circumferential direction which
contributes to the frictional torque can be found to be τw,φ = (τ · nw) · eφ = τrφ cos θ − τzφ sin θ

and thus

τw,φ = τrφ
1√

1 + R2
− τzφ

R√
1 + R2

. (13)

As shown in Sec. II, for a smooth-walled cylinder with nw = er the flow at all Red < Recrit is
a homogeneous shear flow with no axial dependence (i.e., τzφ = 0) and thus the magnitude of the
traction vector at the wall τw,0 is found as in Eq. (2). In the presence of riblets, in addition to τrφ the
stress tensor will also have a nonzero value of τzφ and both of these shear stress components vary
across the riblet surface as shown in Figs. 6(a) and 6(b). The highest shear stress acts at the peaks
of the riblets and the lowest shear stress at the trough of the riblets. These stress profiles remain
invariant for all Red < Recrit.

The evolution in the circumferential components of the traction vector τw,φ acting on each riblet
as the aspect ratio is varied is shown in Fig. 7(a). Substituting these wall shear stress profiles in
Eq. (13) and performing the integration in Eq. (7) over the wavelength 0 < z/λ < 1 results in the
total torque acting on the riblet surface. It is clear from Fig. 7(a) that the introduction of the riblets
results in a spatially varying distribution of the circumferential component of the traction vector at
the wall. Close to the trough of the riblets the wall shear stress is lower than the value τw,0 expected
for the case of the smooth rotor and near the peaks of the riblets τw is locally higher than for the
smooth rotor. Similar behavior has been reported previously in flows over riblets in channel flows
and boundary layer flows [4,12,13,36].

Closer inspection of the computed stress profiles in Fig. 7(a) shows that as the aspect ratio R
of the riblets is increased, the axial variation of τw evolves so that a progressively wider region
of each periodic riblet experiences a wall shear stress which is lower than τw,0. Concomitantly, a
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FIG. 7. (a) Distribution of circumferential component of the wall traction vector as a function of the riblet
R for a single riblet of λ/d = 0.12 at Red = 58 normalized by the circumferential traction of the corresponding
case with a smooth rotor. (b) Evolution of the average shear stress for Red = 58 and λ/d = 0.12 as a function
of R and the change in the wetted area Sw of the riblet surface as a function of the aspect ratio. Increasing the
aspect ratio of the riblets results in a decrease in the average shear stress acting over one riblet while the wetted
area S increases monotonically with R. Here S0 is the wetted surface area of a smooth rotor (over the length of
a single wavelength) in cylindrical Couette flow, S0 = 2πRiλ.

more-localized region of the riblet near the apex of each riblet experiences a wall shear stress that is
larger than the reference value experienced on a smooth rotor. If we define an average shear stress

〈τw〉 = 1

λ

∫ λ

0
τw(z)dz, (14)

the riblet surface experiences an average shear stress that is lower than that of the smooth rotor τw,0

as defined in Eq. (2). Increasing the aspect ratio R of the riblets results in a progressive decrease in
the average shear stress as shown by the red curve in Fig. 7(b). A similar behavior is also reported
in the investigation of the boundary layer flow over riblets [12]. However, adding a texture such
as riblets and increasing the aspect ratio of these features also results in a steady increase in the
total wetted area of the inner cylinder. This increased trend in the wetted area is also shown in
Fig. 7(b). It is this interplay between the decrease in the average shear stress acting on the wall and
the increase in the wetted area of the textured surface as the aspect ratio is increasing that results in
the nonmonotonic behavior of the total torque as a function of the aspect ratio [shown in Fig. 5(b)].
Thus, using Eq. (7) for V-groove riblets, we have

Fφ =
∫ λ

0
τw,φdS =

∫ λ

0
τw,φ2πrwdl =

∫ λ

0
rwτw,φ2π

√
1 + R2dz, (15)

T =
∫ λ

0
(rw × τw) · ezdS =

∫ λ

0
rwτw,φ2πrwdl =

∫ λ

0
r2

wτw,φ2π
√

1 + R2dz. (16)

For small aspect ratios, the decrease in the local shear stress on the wall dominates and evaluation
of these integrals results in a reduction in the total torque. However, for larger aspect ratios, the
increase in the area arising from the last terms in the integrands [Eqs. (15) and (16)] overwhelms
the decrease in the average shear stress distribution and the total integrated force and torque increase,
until ultimately the addition of riblets no longer offers any reduction in frictional force or torque.
The location of the optimal force or torque reduction depends on λ/d; however, for the range of
λ/d shown in Fig. 5, it is clear that the optimum aspect ratio is within 1 < R < 1.5. Clearly, due to
the specific choice of design in this study, Eq. (16) has an additional rw(z) factor which results in a
slightly larger value of the torque reduction than is obtained in the corresponding force. However,
as we have discussed earlier, the total circumferential force exerted on the riblet-covered rotors
still experiences a net decrease compared to the smooth rotors and these changes arise from the
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geometry mediated changes in the local viscous flow near the grooves as opposed to only changes
in the geometry.

B. Taylor vortex regime

After transition to the TVF or WVF regime, the structure of the azimuthal velocity profiles
becomes dependent on the Reynolds number and thus the resulting measurements of the torque
reduction show an additional slight dependence on the Reynolds number. To explore these states
we again use experiments in our Taylor-Couette cell mounted on the rheometer, together with
time-dependent axisymmetric simulations of the swirling flow v = [vr (r, z; t ), vφ (r, z; t ), vz(r, z; t )]
in the TVF regime. As shown in Fig. 4, immediately after transition, within 74 < Red < 110,
the experimental torque measurements show a local speed-dependent increase or decrease as a
result of the hysteresis in the vicinity of flow transition, depending on whether the rotor torque
is increased from below the transition point to above the transition or vice versa. From Fig. SI1(b)
in the Supplemental Material [34] it can also be seen that this transition spans a finite range of
rotation rates before the TVF regimes is fully established. Similar hysteresis in the behavior of the
TVF was reported previously by Andereck et al. [26]. In addition, as mentioned earlier, since the
exponent of the torque does not change up to Red ≈ 1000, we conclude that our experiments have
not transitioned from the TVF into the WVF.

In the Taylor vortex regime, in addition to the relative size of the gap (which uniquely controls
the velocity and stress profiles in the homogeneous Couette shearing profile), the wavelength of
the vortex becomes another important independent length scale in the problem. Various researchers
have indicated that this wavelength is not a single invariant fixed value and depends on the flow
history used to establish the TVF state [37–39]. Gorman and Swinney have reported observing a
variation of between 16 and 20 vortices in a Taylor-Couette apparatus of � = 20 [40].

In the present experimental setup, with � = 5.1, at steady state three toroidal vortex pairs can
clearly be identified. However, in some cases, right after the transition to TVF four vortex pairs
are first observed visually and as the flow evolves they ultimately collapse into three stable pairs
in the steady-state case. Similar behavior is observed in the results of the numerical simulation
with Red = 230 and η = 0.63. Here we select � = 3.4 for the simulations (2/3 of the length of the
experimental setup) to reduce the cost of the simulations and eliminate end effects. The simulations
are performed in OpenFOAM with the PISO algorithm; the diffusion terms are discretized with a
second-order central difference, the convective terms are discretized with a second-order central
difference with correction for the nonorthogonality of the mesh faces due to the riblets, and the time
integration is performed with a second-order backward Euler scheme.

Initially, three counterrotating vortex pairs are formed and then the vortices interact to adjust
their wavelengths and collapse ultimately to two vortex pairs by the time the flow reaches the steady
state. Snapshots of the simulated azimuthal velocity profiles alongside the evolution of the torque
in the Taylor-Couette geometry are presented in Fig. 8(a). Here time is nondimensionalized by
the vorticity diffusion time td = d2/ν. It can be seen that near the beginning (point A) the flow
possesses axially uniform characteristics. As time progresses to t/td ≈ 0.1 (as shown via points B,
C, and D), the flow exhibits the first signs of instability and three vortex pairs are initially formed
in the flow. It is clear that after the Taylor-Couette flow has transitioned to the TVF regime, the
velocity field that was initially only a function of the radial position is now a function of both the
radial and axial directions and new vortical structures appear in the flow due to the instabilities
that were discussed earlier. However, as we reach t/td ≈ 0.55, as shown at points E , F , G, and H ,
the three vortices combine to form two vortices which persist as the flow finally approaches steady
state corresponding to the constant torque observed for t/td > 1. As seen in Fig. 8(a), the temporal
evolution of the torque up to the steady-state value goes through different paths with jumps at
different times as the vortices form and combine together. Note that the ultimate value of the steady
torque recorded in the TVF regime is close to 1.9 times the torque in the CF regime. Similar vortex
pair evolution with vortex pairs merging prior to the final steady state, independent of the initial
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FIG. 8. (a) Simulation showing the evolution of frictional torque over time during development of TVF at
Red = 230, Ta = 24 016, η = 0.63, and � = 3.4 for a smooth rotor. The torque is normalized by G0 defined
in Eq. (5) (the unidirectional base case) and time is normalized by the diffusion time for vorticity td = d2/ν.
Snapshots of the azimuthal velocity at different time instances (denoted by A–I) are shown in the middle row
of images underneath the plot. (b) Space-time evolution of the azimuthal velocity at the radial position r/Ro =
0.72. The axial direction z is nondimensionalized with the gap size d and time is again nondimensionalized
with the vorticity diffusion time.
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FIG. 9. Time evolution of torque for riblet-covered rotors with R = 1.5 and λ/d = 0.24 at Red = 230
compared with the reference case of a smooth rotor. Corresponding contour plots of the azimuthal velocity
profile as well as in-plane streamlines with axial and radial velocities are shown for distinct times where
various changes occur in the flow. This particular riblet surface can reduce the total drag by about 1%.

condition of the experiments, have also been previously reported for wide-gap (η < 0.8) TC cells
with low height-to-gap ratios (� < 11) [41–45].

Additionally, we present a space-time plot of the evolution of the azimuthal velocity at the radial
location r/Ro = 0.72 in Fig. 8(b). The axial direction z is nondimensionalized with the gap size d .
It is clear that for early times 0.1 < t/td < 0.55, three vortices can be identified, but subsequently
these vortices are combined into two stable cells and then the flow reaches its steady-state form with
a constant torque as shown at point I in Fig. 8(a).

In addition to this hydrodynamic instability, the presence of riblets in the TVF also impacts
the evolution of the flow and hence the total torque evolves due to a combination of the viscous-
dominated shearing stress (similar to the case of the CF discussed earlier) coupled with the
interaction of the small-scale riblets (especially their peaks) with the larger length scale Taylor
vortices that develop in the flow. The general trends observed for the time evolution of the frictional
torque on the inner cylinder for Taylor-Couette flow at Red = 230 and each of the riblet-covered
rotors with aspect ratios of 0.2 � R � 2 are very similar; however, the specific values of the torque
and critical time for transition to TVF, as well as the final value of the torque, depend on the aspect
ratio of the riblets. Drag reduction (compared to the smooth rotor) for all values of R < 1.6 can be
observed at steady state, whereas drag increase is observed for higher aspect ratios. (Representative
data are plotted in the Supplemental Material [34].) Note that no theoretical results for the torque
in the Taylor vortex region have been reported to date; however, various functional forms such as
power-law scaling have been suggested in different Reynolds-number regimes throughout the years.
As mentioned earlier, in the TVF, the measured torque on a smooth rotor varies as Re1.54

d , which is
very close to the exponent of 1.5 reported earlier by Wendt [46].

In Fig. 9 we show more detail of the torque evolution for the specific case of R = 1.5. In addition,
at a number of discrete times, especially at local minima and maxima of the time-evolving torque
curve, we show contour plots of the circumferential velocity vφ/Ri�i along with the streamlines of
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FIG. 10. Frictional torque change in the Taylor vortex regime with riblets of λ/d = 0.24 at Red = 230 over
a range of aspect ratios. The results of the torque change for the laminar Taylor-Couette flow for λ/d = 0.24
as a function of the R are also shown here for comparison (dashed line and squares).

the secondary flow in the (r, z) plate, indicating the structure of the axial and radial velocity fields.
Initially (point A), inside each groove, small vortex pairs (arising from the two-dimensional nature
of the flow inside the riblets) are created, while toward the outer cylinder larger vortex structures
start to form. As time progresses (t/td ≈ 0.08, point B), the four pairs of Taylor vortices strengthen
and start to interact with the smaller vortices inside the grooves. Later at t/td ≈ 0.15 (corresponding
to points C and D), the larger Taylor vortices take over the smaller vortices inside the grooves and
then the four vortex pairs take full form. Subsequently, a sudden jump in the torque is observed, as
the vortex pairs interact and mix with each other to merge into the three pairs seen at the local torque
maximum indicated by point E . At the next local minimum in the torque at point F , cell merging
continues and the vortex pairs are down to two, but some remnants of older vortical structures are
seen. Ultimately, when the flow reaches steady state (t > td , point G), only two pairs of vortices are
visible in the entire cell with � = 3.4 and the torque subsequently remains constant in time.

Our experimental results in the Taylor vortex regime presented in Fig. 4 also showed that the total
torque reduction measured on each 3D printed rotor was a function of the aspect ratio of the riblets,
and similar nonmonotonic behavior is observed in the steady-state torque change as a function of the
aspect ratio. A comparison of the computed and experimental changes on the torque for Red = 230,
η = 0.63, and riblets of wavelength λ/d = 0.24 as a function of the aspect ratio R is shown in
Fig. 10. At Red = 230 we are well above the transition from the CF to the TVF regime but still
well below transition to the WVF regime. The results show a nonmonotonic behavior for the torque
reduction as a function of the aspect ratio with a local minimum appearing between aspect ratios
of 0.5 and unity. For comparison we also show the results of the torque reduction observed in the
laminar flow for Red < 74 with the same riblet geometry, over the same range of aspect ratios.

Comparing the drag reduction achieved in the TVF (at Red = 230) compared with the Couette
flow regime (at Red � 74), it is apparent that in the Taylor vortex regime, friction reduction can
only be achieved over a smaller range of aspect ratios, compared with the broad drag-reducing
regime obtained in the homogeneous CF case. The maximum percentage reduction is quite similar
between the two cases; however, this local minimum in the torque happens at a lower aspect ratio
(R ≈ 0.6–0.7) for the TVF, compared with the CF (R ≈ 1.2–1.3).

This trend in the torque change can again be understood by considering in detail the local
distribution of the traction on the riblet wall. As we discussed in Sec. IV A and in Eq. (13), the
circumferential component of the traction vector is dependent on both τrz and τrφ as well as the
orientation of the normal vector to the wall. Here, with the Taylor vortices present, instead of plotting
the traction distribution for only one riblet, in Fig. 11(a) we show the distribution of wall shear stress
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FIG. 11. (a) Distribution of the circumferential component of the viscous surface traction on the steady,
rotating riblet-covered rotor wall in the TVF regime with riblet-covered inner cylinders. The shear stress is
plotted for two Taylor vortex pair wavelengths 14λ and for various aspect ratios 0 � R � 2 at Red = 230.
The shear stress is nondimensionalized with the shear stress in the laminar Taylor-Couette flow with smooth
rotors τw,0 [defined in Eq. (2)]. (b) Evolution in average circumferential wall traction in Taylor vortex flow over
riblet-covered rotors compared with the average shear stress on a smooth rotor as a function of the aspect ratio
for the case of λ/d = 0.24 and Red = 230 (red line) as well as the change in the wetted area S/S0 as a function
of R (blue line).

with axial distance over a length corresponding to two Taylor vortex pairs (z/λ = 14) in order to
capture all of the details of the profiles. Here the traction is normalized by the traction distribution
on a smooth wall in the case of the homogeneous CF conditions as shown in Eq. (2).

Compared to the CF regime, the two-dimensional nature of the velocity field in the TVF regime
results in the inner rotor experiencing a nonuniform distribution in the local shear stress component
τrφ even in the smooth rotor case (R = 0) and this results in a nonuniform traction τw,φ at the wall.
The additional presence of the riblets further changes the traction distribution such that the traction
experienced inside the grooves is less than the traction close to the peaks of the riblets. On the other
hand, arising from the vortical modulation of the velocity profiles in the axial direction, the traction
distribution is not the same for each and every riblet; therefore, the maxima and minima of the
curves follow the overall shape of the shear stress distribution arising due to the Taylor vortices (as
in the case of R = 0) while also possessing local frequency maxima and minima at a higher spatial
frequency due to the presence of the riblets. This shows that both the riblets on the rotor surface
and the Taylor vortices that develop in the flow field within the gap play essential roles in the net
changes seen in the frictional torque.

Due to the distribution of the traction on riblet-covered rotors, we notice that a substantial portion
of the area of each riblet experiences a traction lower than the corresponding modulated traction on
the smooth surface. Increasing the aspect ratio results in a larger and larger fraction of the rotor
experiencing a lower shear stress inside the grooves. For the deepest grooves (R = 1.5 and 2) the
flow moves with almost the same velocity as the rotating wall at the very bottom of the groove.
Consequently, as we show in Fig. 11(b), the average shear stress distribution (averaged over one
wavelength of the vortex pair) in TVF over the riblets decreases as the aspect ratio of the riblets
increase. However, due to the Taylor vortices, the peaks of the riblets also experience a modulated
increase in the shear stress compared to the case of the homogeneous CF regime. Especially in
higher-R cases, the local minima of the shear stress profiles remain rather constant along the length
of the cylinder while the local stress maxima change along each axial period following the long-
wavelength distribution in the traction arising as a result of the Taylor vortices. The average traction
distribution over one complete period of the vortex pairs (z/λ = 7) as a function of the aspect ratio
of the riblets is presented in Fig. 11(b). Similar to the CF case [see Fig. 7(b)], the average traction
decreases monotonically with aspect ratio whereas the total wetted area increases. Therefore, the net
torque reduction which arises from the interplay of the reduction in the average traction, coupled
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with the increase in the wetted area of the grooved rotor, once again varies nonmonotonically and
goes through a local minimum as a function of the aspect ratio of the riblets. However, it should be
noted that due to the superimposed axial modulation in the shear stress experienced on the peaks
of the riblets, the decrease in the average traction seen in Fig. 11(b) is not as substantial as in the
axisymmetric Couette flow regime. Contrasting Figs. 11(b) and 7(b), it can be seen that the reduction
in the average traction in the presence of Taylor vortices only overcomes the geometric effect of the
area increase for a smaller range of aspect ratio. Hence the regime corresponding to a net torque
reduction can only be achieved for a smaller range of aspect ratios compared with the laminar case.
As shown in Fig. 10, our experimental measurements in the TVF regime agree very well with the
results of the numerical simulations presented here.

V. CONCLUSION

In this paper we have used the Taylor-Couette geometry to study the drag-reducing effect of
riblets on a steady torsional flow and to measure the net torque reduction they can offer over a
range of flow speeds. Taylor-Couette flow is a canonical flow with a well-defined geometry and
does not have the additional complications of the entrance or exit length effects encountered in
pipe or channel flow experiments. The experimental setup was designed and built using several
complementary manufacturing methods. The inner cylinders were 3D printed using a Form 1+ 3D
printer with various V-groove riblet sizes varying in both aspect ratio and wavelength. The fixed
outer cylinder was constructed using a CNC mill and the setup was mounted on a stress-controlled
rheometer to allow for accurate measurement of the angular velocity and frictional viscous torque
on the inner cylinder.

To understand the results of the experiments, axisymmetric and periodic numerical simulations
were performed on the homogeneous purely azimuthal Couette flow with riblet surfaces and the
results were compared with experimental results. The experimental and numerical results confirm
that using riblet surfaces confers an ability to reduce the frictional torque exerted by the fluid on
the rotor. Using an asymptotic expansion of the velocity profile, along with a domain perturbation
analysis, we also present a theoretical prediction for the changes in torque expected in the limit of
shallow riblets. In the limit of R → 1, this theoretical model captures the results very well; however,
it fails to capture the nonmonotonic dependence of the torque change with aspect ratio observed for
larger R.

The above discussions all focused on the laminar flow regime where the effect of changes in the
velocity (or Red ) on either the smooth case or the riblet-covered rotors is linear and thus drops out of
the problem when ratios such as 
G/G0 are calculated. However, we have also investigated the case
of higher Reynolds number (Red = 230) in the Taylor vortex regime with η = 0.63 and � = 3.4 and
studied in detail the effect of the riblet-covered rotors on the changes in the frictional torque on the
inner cylinder. Time-dependent numerical simulations of the flow over riblets with λ/d = 0.24 and
aspect ratios in the range of 0 � R � 2 were analyzed to understand the interactions of the riblets
with the Taylor vortices.

Computations showed that the riblet peaks are directly in contact with the Taylor vortices that
develop at steady state. These vortical structures try to penetrate inside the grooves and hence the
riblet peaks are in contact with high-momentum fluid and experience a higher shear stress compared
to the rest of the groove surfaces. The resulting integrated changes in torque were calculated as a
function of the aspect ratio of the grooves and compared with the corresponding laminar situation.
Similar to the laminar case, the riblets reduce the average shear stress distribution over the textured
rotor as the aspect ratio of the riblets is increased. However, the presence of the Taylor vortices and
their interactions with the riblets result in an additional increase in the total frictional torque and
hence the reduction in the average shear stress distribution is smaller than the decrease observed
in the laminar axisymmetric case. The nonmonotonic trends observed in the torque change as a
function of R are extended into the Taylor vortex regime; however, both the computations and
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experiments show that a smaller range of aspect ratios are able to provide a reduction in the total
frictional drag force at Red = 230.

Given the complexity of the Taylor vortex flow and the various bifurcations that are possible
for this flow, it is intriguing to consider additional cases with different riblet geometries and other
Reynolds numbers. Future work should focus on analysis of inertial effects on the torque changes
throughout the Taylor vortex flow regime. In addition, fully 3D simulations for larger Reynolds
numbers should be performed for the full circumferential extent of the concentric cylinders ge-
ometry, since the ensuing flow states are not fully axisymmetric. However, such simulations are
expensive and would require substantially larger computational resources.

APPENDIX A: THEORETICAL MODEL FOR CHANGES IN TORQUE USING ASYMPTOTIC
EXPANSION AND DOMAIN PERTURBATION OF RIBLET TEXTURED

ROTORS AT SMALL ASPECT RATIOS

To understand the effect of the size of the riblets, we can expand the theoretical calculations of
the cylindrical Couette flow to include higher-order terms for small riblets with amplitudes much
smaller than the radius of the inner cylinder (A � Ri). To consider this small parameter and be able
to compare with the rest of the dimensionless groups introduced throughout this Appendix, we can
write

A

Ri
= R

2

λ

Ri
= R

2
ε (A1)

and hence we can think of two small parameters in the problem. One is the aspect ratio of the riblets
R = 2A/λ (meaning very shallow riblets) as well ε = λ/Ri, where at the limit of A/Ri → 0, the
results of the torque calculations reduce to the results from a smooth cylinder in steady Taylor-
Couette flow and at a constant aspect ratio increasing the wavelength would result in an increase
in ε.

We then assume that the azimuthal velocity vφ profile in the presence of riblets can be written
in the form below, which has a zeroth-order and a first-order term, with the zeroth order being the
same profile as the solution for smooth laminar Couette setup. Any effect of higher-order terms is
neglected,

vφ = v
(0)
φ + Rεv

(1)
φ + O(R2ε2) + · · · , (A2)

and the zeroth-order Couette solution is only a function of the radial direction r:

v
(0)
φ = η

1 − η2

(
Ro

r
− r

Ro

)
Ri�i. (A3)

Also, on the basis of asymptotic analysis and computations we assume that vr is of second and
higher order and thus does not appear in the present analysis whereas vz is of first order and is only
a function of the radial direction. More details justifying this assumption can be found at the end of
this Appendix. Therefore, we write

⎡
⎣ vr

vφ (r)
vz

⎤
⎦ =

⎡
⎣ 0

v
(0)
φ

0

⎤
⎦ + Rε

⎡
⎣ 0

v
(1)
φ (r, z)

v(1)
z (r)

⎤
⎦ + O(R2ε2) + · · · . (A4)

Thus, the radial and axial velocities do not enter the azimuthal component of the equations of motion
and can be written as

∂

∂r

(
1

r

∂

∂r
(rvφ )

)
+ ∂2vφ

∂z2
= 0. (A5)
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After substituting for vφ from Eq. (A2) (neglecting the second- and higher-order terms), this can be
divided into two separate equations

∂

∂r

(
1

r

∂

∂r

[
r
(
v

(0)
φ

)]) = 0, (A6)

∂

∂r

(
1

r

∂

∂r

[
r
(
v

(1)
φ

)]) + ∂2

∂z2

(
v

(1)
φ

) = 0. (A7)

Since Eq. (A3) satisfies the equations of motion for Taylor-Couette flow, in a smooth-walled cylinder
then Eq. (A6) is already satisfied and thus the equation of motion for the first-order term simplifies
to Eq. (A7).

Now to solve this equation we make some simplifying assumptions. First we note that the
boundary condition on the inner cylinder is a constant rotation rate, given by �i. Therefore, the
velocity boundary condition on the riblets is not uniform and is dependent on the local position on
the riblets wall. If rw(z) is the local radial location on the riblet inner cylinder, then the boundary
condition for vφ is written as (note the symmetry about the line of z = λ/2)

vφ,BC = rw�i = (Ri − Rz)�i for 0 � z � λ

2
, (A8)

vφ,BC = rw�i = [Ri − R(λ − z)]�i for
λ

2
� z � λ. (A9)

Thus, for the first-order term in azimuthal velocity, the boundary condition for 0 � z � λ/2 can be
written in nondimensional form as

Rε
v

(1)
φ,BC

Ri�i
=

(
1 − R z

Ri

)
− 1

Ri�i
v

(0)
φ

∣∣∣∣
r=Ri−Rz

. (A10)

Substituting for the zeroth-order term from Eq. (A3) at r = Ri, we have (by replacing Ri/Ro with η

and Rz/Ri = Rεz/λ)

Rε
v

(1)
φ,BC

Ri�i
=

(
1 − Rε

z

λ

)
− 1

1 − η2

1

1 − Rε z
λ

+ η2

1 − η2

(
1 − Rε

z

λ

)
. (A11)

So for shallow riblets with amplitude much smaller than Ri, i.e., εR � 1, we can use the Taylor
series expansion

1

1 − Rε z
λ

= 1 + Rε
z

λ
+ O(R2ε2) + · · · . (A12)

Thus the boundary condition (neglecting the second- and higher-order terms) can be simplified to

v
(1)
φ,BC

Ri�i
= −2

1 − η2

z

λ
+ O(Rε) + · · · . (A13)

In the limit of shallow grooves and small ε, Eq. (A7) can be solved analytically with boundary
conditions of �o = 0 at r = Ro and Eq. (A13) at r = Ri. The solution can be written as

v
(1)
φ

Ri�i
= −2η

(1 − η2)2

(
Ro

r
− r

Ro

)
z

λ
. (A14)

Now, similarly to find the change in the torque due to the geometry, the torque can also be
expanded in terms of a zeroth- and first-order term as

T = T (0) + RεT (1) + O(R2ε2) + · · · , (A15)

where the torque on a smooth rotor (T (0)) is given by Eq. (4). Thus, to calculate the first-order term
in the torque, we use the first-order term in velocity to calculate the additional contribution to the
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FIG. 12. (a) Torque-reduction results from numerical simulation of Taylor-Couette flow with riblet-covered
rotors having λ/Ri = 0.07 and for different radius ratios η and λ/d as a function of the aspect ratio R.
Theoretical results from Eq. (11) for shallow riblets are also shown in the figure with dashed lines. (b) Torque
reduction as a function of the wavelength of the riblets at a fixed value of the aspect ratio R = 1.00.

shear rate on the wall. Since we are assuming R � 1 we can approximate the shear rate on the riblet
wall as the shear rate calculated at r = Ri. Thus

γ̇
(1)

rφ = r
∂

∂r

(
v

(1)
φ

r

)
(A16)

and then the shear stress on r = Ri can be written as

τ
(1)
rφ = μ

4η

(1 − η2)2

Ro

R2
i

z

λ
Ri�i. (A17)

Hence the first-order correction term in torque can be calculated and simplified as

T (1) = 2
∫ λ/2

0
τ

(1)
rφ 2πR2

i dz = 1

2
(4πρν2λ)

1

(1 − η2)2

Ri

d
Red (A18)

and in dimensionless form

G(1) = T (1)

4πρν2λ
= 1

2

1

(1 − η2)2

Ri

d
Red . (A19)

Now to find the change in torque compared to a smooth rotor, we have


G

G0
= −1

2
R

(
λ

d

)(
1

η(1 + η)

)
. (A20)

This equation predicts that the changes in torque are also a function of the size of the riblets
λ/d as well as the geometry of the specific Taylor-Couette cell [from the term 1/η(1 + η)]. The
computational results presented above were generated by keeping the radius ratio η and the gap
size d constant and only changing the wavelength of the riblets. Figure 12(a) shows the results
of numerical simulation where the wavelength of the riblets and the radius of the inner cylinder
were kept constant at λ/Ri = 0.07 and the radius of the outer cylinder and the gap were changed
and therefore both η and λ/d were changed. The results presented here also show a nonmonotonic
relationship similar to the effect of varying aspect ratio on the reduction in torque, but it can be seen
that the asymptotic theory once again can capture the slope of the curves at R → 0. Thus the theory
and supporting experimental and numerical data show that the torque reduction is initially directly
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dependent on the size of the riblets with respect to the size of the Taylor-Couette geometry (i.e.,
A/Ri), as well as the radius ratio η of the Taylor-Couette cell used.

On the other hand, when the aspect ratio of the riblets is kept constant, the torque reduction
achieved is directly dependent on the wavelength of the riblets and as the wavelength λ/d increases,
the torque reduction achieved is enhanced as seen in Figs. 4 and 5. If the torque reduction at a
constant R is plotted as a function of the wavelength λ/d [shown in Fig. 12(b)], it can be seen that
the extent of the torque reduction achieved follows a linear trend with increasing wavelength. The
torque reduction also depends on the curvature of the base flow and steadily decreases as η → 1.
Finally, it should be noted that since the asymptotic theory relies on an expansion about a chosen
radius (here Ri), the theory will predict the same percentage change in circumferential force and
torque and thus overestimates the reduction in force as compared to the calculations presented in
Fig. 5(d).

Now, to support the earlier ansatz [i.e., v(1)
r = 0 in Eq. (A4)], we attempt to solve the equations of

motion for steady cylindrical Couette flow over V-groove riblet surfaces. We start by decomposing
the solution for the velocity and pressure distribution as a base solution and a first-order perturbation
for small riblets with the earlier assumption that Rε � 1. Here the base flow is the cylindrical
Couette flow over smooth rotors discussed earlier and the perturbation term is due to the presence
of the riblets. Therefore, we can expand the pressure and velocity profiles in the forms

p = p(0) + Rεp(1) + O(R2ε2) + · · · , (A21)

v =
⎡
⎣vr

vφ

vz

⎤
⎦ =

⎡
⎣ 0

v
(0)
φ

0

⎤
⎦ + Rε

⎡
⎢⎣

v(1)
r

v
(1)
φ

v(1)
z

⎤
⎥⎦ + O(R2ε2) + · · · . (A22)

First the component of the steady axisymmetric Navier-Stokes equation in the φ direction is written
as

ρ

(
vr

r

∂vφ

∂r
+ vz

∂vφ

∂z

)
= μ

[
∂

∂r

(
1

r

∂

∂r
(rvφ )

)
+ ∂2vφ

∂z2

]
. (A23)

With the no-slip boundary condition on the inner and outer cylinders, i.e., v(1)
r (r = Ri ) = v(1)

r (r =
Ro) = 0, it is assumed that v(1)

r = 0. Thus, substituting the expansion (A22) for the velocity and
gathering the first-order terms with the assumption that v(1)

r = 0 gave us Eq. (A7), which was solved
subject to the boundary condition given by (A13) and the solution is presented in Eq. (A14). Now
using the axisymmetric Navier-Stokes equation in the radial direction

ρ

(
vr

∂vr

∂r
+ vz

∂vr

∂z
− v2

φ

r

)
= ∂ p

∂r
+ μ

[
∂

∂r

(
1

r

∂

∂r
(rvr )

)
+ ∂2vr

∂z2

]
(A24)

and again substituting the expansion and gathering the first-order terms, we obtain

ρ
2v

(0)
φ v

(1)
φ

r
= ∂ p(1)

∂r
(A25)

and thus

∂ p(1)

∂r
= ρ

2η2

(1 − η2)3

1

r

(
Ro

r
− r

Ro

)2 z

λ
(Ri�i )

2. (A26)

Integrating this equation, one obtains an equation for the pressure distribution as

p(1) = 2η2

(1 − η2)3

z

λ

[
−1

2

(
Ro

r

)2

− 2 ln

(
r

Ro

)
+ 1

2

(
r

Ro

)2]
ρ(Ri�i )

2. (A27)
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Therefore, the pressure gradient in the z direction is written as

∂ p(1)

∂z
= 2η2

(1 − η2)3

1

λ

[
−1

2

(
Ro

r

)2

− 2 ln

(
r

Ro

)
+ 1

2

(
r

Ro

)2]
ρ(Ri�i )

2, (A28)

which is only a function of the radial direction r. To simplify, we denote the right-hand side of
Eq. (A28) by f (r) and use the component of the steady axisymmetric Navier-Stokes equation in the
axial direction

ρ

(
vr

∂vz

∂r
+ vz

∂vz

∂z

)
= −∂ p

∂z
+ μ

[
1

r

∂

∂r

(
r
∂vz

∂r

)
+ ∂2vz

∂z2

]
. (A29)

Substituting for the pressure and velocity expansion and collecting the first-order terms simplifies
Eq. (A29) to

μ

[
1

r

∂

∂r

(
r
∂v(1)

z

∂r

)
+ ∂2v(1)

z

∂z2

]
= ∂ p(1)

∂z
= f (r). (A30)

Therefore, the solution to vz has the form

v(1)
z = g(r) + C1z + D1 (A31)

and with the boundary condition

∂v(1)
z

∂z

∣∣∣∣
z=0

= −∂v(1)
z

∂z

∣∣∣∣
z=λ/2

; (A32)

one thus finds that C1 = 0. Therefore, using the continuity equation (at this order)

1

r

∂

∂r

(
rv(1)

r

) + ∂v(1)
z

∂z
= 0 (A33)

and substituting the above form for the first-order terms, one gets

1

r

∂

∂r

(
rv(1)

r

) = 0, (A34)

which can be solved to give

v(1)
r = D1

r
(A35)

and with the no-slip boundary condition at the inner and outer walls, D1 = 0 and thus v(1)
r = 0,

confirming the assumption that was made earlier to solve the equations. Any radial or recirculating
velocity that is induced by the riblets thus develops only at higher orders O(ε2R2) and beyond.

For g(r), substituting v(1)
z into Eq. (A30) and integrating twice we have

g(r) =
∫ (

1

r

∫
r

μ
f (r)dr + C2

r

)
dr + D2 (A36)

subject to no-slip boundary conditions at r = Ri and r = Ro. Thus the velocity field at first order is
v(1)

r = 0 and v(1)
z = g(r), where

g(r) = K

[(
r

Ro

)4

+ 16

(
r

Ro

)2

− 16

(
r

Ro

)2

ln

(
r

Ro

)
− 8 ln

(
r

Ro

)2]
+ C2 ln

(
r

Ro

)
+ D2,

(A37)
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with

K = ρ

μ

2η2

(1 − η2)3

R2
o

32λ
(Ri�i )

2, (A38)

C2 = 17 − η4 − 16η2 + 16η2 ln(η) + 8 ln(η)2

ln(η)
K, (A39)

and

D2 = −17K. (A40)
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