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Viscoelastic fluids are a common subclass of rheologically complex materials that are
encountered in diverse fields from biology to polymer processing. Often the flows of vis-
coelastic fluids are unstable in situations where ordinary Newtonian fluids are stable, owing
to the nonlinear coupling of the elastic and viscous stresses. Perhaps more surprisingly, the
instabilities produce flows with many of the hallmarks of turbulence—even though the ef-
fective Reynolds numbers may be O(1) or smaller. We provide perspectives on viscoelastic
flow instabilities by integrating the input from speakers at a recent international workshop:
historical remarks, characterization of fluids and flows, discussion of experimental and
simulation tools, and modern questions and puzzles that motivate further studies of this
fascinating subject. The materials here will be useful for researchers and educators alike,
especially as the subject continues to evolve in both fundamental understanding and
applications in engineering and the sciences.
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PERSPECTIVES ON VISCOELASTIC FLOW …

FIG. 1. Flow-induced birefringence of a viscoelastic polymer melt flowing into (a) and exiting (b) a channel
die; note that the shapes of the corners are slightly different between the two. The fringe patterns show lines
of constant retardance and constant principal stress difference in the flowing melt. As the flow rate into the
die increases, the elastic stress differences increase rapidly and fringes become increasingly numerous and
closely spaced (c), (d). Beyond a critical imposed pressure drop the flow becomes unsteady and time dependent
(e) as reflected in the chaotic fringe pattern, which is an apparent signature of a phenomenon named elastic
turbulence. Adapted from [1].

I. INTRODUCTION

Authors: S. S. Datta and H. A. Stone

Viscoelastic instabilities often occur during the flow, at sufficiently strong forcing, of polymer
solutions and other viscoelastic fluids—driven by the strong coupling between the (viscous) fluid
flow and the material’s elasticity. A classic example of a molten polymer entering a planar contrac-
tion is shown in Fig. 1; beyond a critical flow rate, the flow field is dramatically disrupted, even
though inertial effects are negligible. The dynamics of these complex fluids is both fundamentally
interesting and technologically important, and continues to be studied by researchers around the
world. In some cases, such flow instabilities lead to elastic turbulence—a chaotic, strongly fluc-
tuating regime of fluid flow, such as Fig. 1(e), which, amazingly, occurs at low Reynolds number.
The statistical features of the flow in this regime have been suggested to be universal, insensitive
to the details of the viscoelastic fluid. Although some flow configurations are well studied, perhaps
surprisingly there remain poorly understood aspects of the flows, and these questions lead to many
open fundamental and applied problems in the dynamics of complex fluids.

S. S. Datta and H. A. Stone organized a virtual workshop of the Princeton Center for Theoretical
Sciences in January 2021 to bring together researchers to discuss problems related to viscoelastic
flow instabilities, assess successes as well as examples of the lack of predictability in current
theory, models and simulations, identify theoretical pathways linking tools of statistical and polymer
physics to mean field models of the flows, and highlight applications of these instabilities. The
ultimate goal was to bring this community together and clarify, as well as identify, unifying/open
questions for future research to address. We had nearly 500 registered participants from institutions
in academia and industry from all over the world. This Perspective, which includes contributions
from the invited speakers, summarizes some of the research presented and discussions generated
at the workshop. Indeed, the participants expressed the viewpoint that the discussions were partic-
ularly enlightening as they crystallized poorly understood topics, offered ideas where theory and
experimental findings diverged, and highlighted where mechanistic understanding was poor or even
lacking.

080701-3



SUJIT S. DATTA et al.

A. This article: A summary and perspective

The goal of this article is to provide a short record of the main themes of the workshop, including,
where possible, some of the spirit of the discussions that occurred between the talks. A wide range
of topics are discussed briefly, with the hope that a researcher new to the field, or even an established
researcher in one corner of the subject, will find introductory ideas that can launch them into a new
research topic if they are so enthused.

This article is organized similar to the structure of the talks in the workshop. Any study of the
subject of the flow of complex fluids necessarily touches on important ideas in fluid mechanics, from
the geometry of a wide range of (steady) base flows that are possible to the nature of constitutive
equations that are needed to close the equations of motion. Even though this closure treats the
fluid as a continuum, it must include the fact that the microstructure of the fluid is deformable,
which changes the mechanical, i.e., elastic, response. In addition to reversible deformations, various
irreversible effects take place in the form of relaxation and viscous dissipation. Experimental
observations have been crucial to identifying the rich nature of the dynamics that can occur, and
it should not be forgotten that often the experts were surprised when many of the observations
were first made. Furthermore, in some cases, elementary models have been helpful in rationalizing
observations, at least qualitatively, in the field of complex fluids generally and polymer solutions
in particular, e.g., the bead-spring model suggested in 1953 by Rouse [2] and improved three years
later by Zimm [3] and then used by de Gennes [4] and Hinch [5] to propose the coil-stretch transition
as responsible for some of the most dramatic viscoelastic flow responses.

Hence, by means of introduction to this field, we provide a discussion of these complex fluid
dynamics in Sec. II, with emphasis on the dimensionless parameters needed to characterize the flow,
and with historical developments in the field highlighted. We introduce viscoelastic flow instabilities
and provide a discussion of the different kinds of kinematics that both characterize different flow
configurations and indicate their potential as a trigger for flow instability. Also, we highlight how
in the case of instabilities in common flows with curved streamlines, Pakdel and McKinley [6]
provided an insightful characterization that has proven to be helpful quite broadly. Most of the
discussion here and elsewhere is thinking about polymeric fluids (but see Sec. VIII below).

Numerical simulations using macroscopic, necessarily approximate, constitutive equations link-
ing the state of stress to the strain and rate of strain in these viscoelastic materials have proven to be
increasingly insightful in unraveling (no pun intended) the dynamics of these flows with deformable
microstructure. Hence, Sec. III provides background on constitutive models and numerical tools,
including open-source code, for studying viscoelastic fluid flows. This discussion can also serve as
an introduction to flow modeling more generally.

The subject of viscoelastic flow instabilities in model (canonical) geometries and the connections
to turbulent dynamics is introduced in Sec. IV. The discussion includes a review of the main
observations as well as new ideas, related to mechanisms, that have come from two-dimensional
(2D) and three-dimensional (3D) numerical simulations. Elastic flow instabilities in more complex
geometries, such as the flow between a pair of cylinders, or flow in ordered or disordered porous
media, are discussed in Sec. V. Section VI deals with the combined effects of elasticity and
inertia in engendering novel instabilities in rectilinear shearing flows. The role of these instabilities
vis-à-vis transition from the laminar state, and in reducing drag in the fully developed turbulent
regime (the maximum drag-reduced regime, in particular), is discussed. Connections between the
different turbulent regimes—elastic, inertial, and elastoinertial—are highlighted. Flow instabilities
in simplified free-surface flows are discussed in Sec. VII. Some of the flow instabilities that are
observed in other nonpolymeric complex fluids are indicated in Sec. VIII and the article closes in
Sec. IX with future outlooks across this fascinating subject. We hope the reader enjoys this tour of
instabilities in the flow of complex fluids.
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II. VISCOELASTIC FLUIDS AND FLOWS

Author: G. H. McKinley, with input from S. S. Datta, R. J. Poole, E. S. G. Shaqfeh, and H. A. Stone

As introduced in undergraduate classes, ordinary small-molecule liquids are viscous and New-
tonian: the stress is a linear function of the shear rate (also known as the strain rate), with the
coefficient of proportionality given by the dynamic shear viscosity. By contrast, ordinary solid
materials are elastic: the stress is a linear function of the strain, and the coefficient of proportionality
is the elastic modulus. Conceptually it is useful to imagine an elastic material as made up of simple
springs with a restoring force linear in displacement, e.g., Hooke’s law derives from Robert Hooke’s
observation, in Latin, in the mid-late 1600s that “ut tensio, sic vis” or “as the extension, so the force.”
The materials we are concerned with have elements of both: they are viscoelastic, so that the state
of stress depends on both the strain and the strain rate. Conceptually, such a material has some
responses expected of a matrix of damped linear springs, e.g., the generalized Maxwell or Voigt
linear viscoelastic models have this character and can be used to characterize such materials in the
small-amplitude limit.

Polymer solutions are a common and industrially relevant example of a viscoelastic fluid. Thus,
a wide variety of industrial processes such as molding, extrusion, coating, spraying, etc., that
involve polymer solutions give rise to the challenge of modeling and controlling viscoelastic flows.
These polymer solutions can be dilute or concentrated (and in the latter case they also share many
properties with polymer melts), and can be described by a variety of different constitutive relations
[7,8]. Other viscoelastic fluids include micellar surfactant solutions, emulsions, liquid crystals, etc.

A. Typical flows and kinematics

As in all areas of fluid dynamics, flows can be driven by the motion of boundaries or by a
pressure difference. Thus, the two prototype flows that are characterized most are Taylor-Couette
flow, which refers to the wall-driven flow in the annular gap between two concentric cylinders, and
pressure-driven (or Poiseuille) flow in a channel or circular pipe. The former has curved streamlines,
whereas the latter flow is rectilinear far from the inlet when the flow is fully developed—although
streamline curvature can also be introduced when the channel or pipe has a curving centerline (often
termed “Dean” flow) or when a boundary-driven flow is forced to recirculate in a closed cavity.

Early in the 20th century, in an experimental and theoretical study of a Newtonian fluid in a
concentric cylinder device, G. I. Taylor characterized the instability of this flow experimentally and
numerically: above a critical rotation rate (Reynolds number) the flow is unstable when the inner
boundary is rotated with the outer boundary fixed, but the opposite case (inner boundary fixed and
outer boundary rotating) is always linearly stable [9]. Over the next few decades there were hints
that viscoelastic fluids had a qualitatively different response—but the definitive work on the topic,
clarifying the existence and onset of elastic instabilities, and the fact that they could occur for
low-Reynolds-number flows when the inner boundary was fixed and outer boundary rotating would
not occur until the late 1980s and early 1990s.

In addition, to understand the motion of fluids that contain a deformable microstructure, it is
important to recognize the distinction between shear-dominated and extension-dominated flows.
For steady flows, in the former case, because of the presence of a finite rate of rotation, material
points separate algebraically in time, and orientable objects tumble at a rate nominally tied to the
vorticity in the flow. By contrast in the latter flow type, because of the absence of vorticity, material
points separate exponentially in time. It should not be surprising that exponential stretching can
cause large changes in the state of stress within a viscoelastic material.

B. Rheology and rheological parameters

The field of non-Newtonian fluid mechanics, with its unfamiliar notation and specific termi-
nology/jargon, can be initially bewildering to newcomers. This is, in some sense, unavoidable
because of the vast range of fluids that fall into the class of what used to be called generically
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non-Newtonian fluids and that are now increasingly defined by the catchall phrase complex fluids.
These materials may range from dilute polymer solutions and melts to dense suspensions with high
volume fractions of particles, surfactant solutions that self-assemble into long “wormlike” micellar
structures to soft swollen polymer microgels, liquid crystalline dispersions and beyond. The key
feature of interest in understanding viscoelastic flow instabilities is the presence of an underlying
deformable microstructure in the fluid that can be affected by the flow, and which, in turn, can
modify the underlying equations of motion—as a consequence of the generation of additional
non-Newtonian contributions to the total stress field that arise from changes in the microstructural
configurational distribution. It is the nonlinear feedback between these two features of flow and fluid
that give rise to entirely new instabilities not present in Newtonian fluids that are characterized by a
linear relationship between stress and deformation rate.

It is not possible in a short perspective article to cover this entire zoology of fluids (for more
details the reader is directed to [8]), but it is possible to summarize five of the key phenomena
and the corresponding material properties that are displayed by prototypical complex fluids. These
involve the following:

(1) Fluid viscoelasticity, as parameterized by a stress relaxation time, commonly denoted λ (but
also often defined as τ in the physics literature) and a complex (shear) modulus G∗(ω) = G′(ω) +
iG′′(ω), where ω is the frequency of the time-varying strain field in small-amplitude oscillatory shear
(SAOS). Here the storage modulus G′ characterizes the elastic response of the material and the loss
modulus G′′ characterizes the viscous response of the material. The elastic and viscous stresses
resulting from this deformation grow linearly with the strain amplitude and are, respectively, in
phase and 90 degrees out of phase with the imposed sinusoidal strain oscillation.

(2) The development in steady simple shear of large normal stresses along the principal axes
of the flow characterized by two nonzero normal stress differences, commonly denoted by material
functions N1 and N2.

(3) Shear rate dependence of the viscometric material functions that are measured in steady
shearing flow with shear rate γ̇ ; e.g., a shear-thinning viscosity, η(γ̇ ) = τ12/γ̇ and normal stress
coefficients �1(γ̇ ) = N1/γ̇

2 and �2(γ̇ ) = N2/γ̇
2.

(4) Time and rate dependence, often corresponding to strain hardening and tension thickening
(e.g., flexible linear polymers in dilute solution) respectively, in the time-dependent extensional
viscosity function, η+

E (ε̇, t ), where ε̇ is the local extension rate in an extensional flow.
(5) The possible appearance of a yield stress τy (and a corresponding yield strain γy) at suffi-

ciently high concentrations of the microstructural constituents.
Just as in the case of a communicable disease, such as the flu (or COVID-19!), the list of

symptoms described above may be present or absent to different extents in a particular fluid,
or constitutive model, and care must be taken to understand these limitations. For example, the
Oldroyd-B model, which is discussed extensively in the rest of this paper, predicts some of
the phenomena in the above list; specifically items no. 1, 2 (but only partially as N2 = 0), and
4, but does not predict rate dependency of the viscometric functions. To compare experimental
observations and theoretical predictions, the rheological material response of a given fluid needs
to be carefully characterized in several different flow fields, e.g., at minimum, SAOS, as well
as a large deformation shearing flow such as steady simple shear flow at large shear rates (i.e.,
γ̇ � 1/λ) or large-amplitude oscillatory shear (LAOS) as well as an extensional flow of some kind,
so that accurate model parameters can be extracted from experimental data. Highly elastic dilute
polymer solutions, or “Boger fluids” [10,11] were formulated to exhibit an approximately constant
shear viscosity but significant elasticity. Early fluid formulations used corn syrup as the viscous
base solvent and were subject to pronounced bacterial degradation (and even fermentation!) issues;
however, these issues were overcome by the formulation of purely synthetic hydrocarbon-based
Boger fluids based on high molecular weight polymers such as (polydisperse) polyisobutylene
[12] or, later, (monodisperse) polystyrene [13]. The rheological response of these Boger fluids
correspond quite closely to the predictions of the Oldroyd-B model so that quantitative comparisons
between the predictions of linear stability analysis and careful experimental observations could be
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performed without the complications of the interplay between viscoelasticity and shear thinning in
the viscosity.

Additional, more-complex rheological phenomena arising from complications such as finite
extensibility of the polymer chains or coil overlap in semidilute/concentrated solutions can be
incorporated by including additional physics in the microstructural description of the complex fluid.
This invariably gives rise to additional (often dimensionless) model parameters, such as the finite
extensible, nonlinear elastic (FENE) parameter L that describes the finite extensibility of solvated
polymer chains [14] or the Giesekus mobility parameter α [15] describing anisotropic drag on the
underlying flow-aligned microstructural elements, detailed further in Sec. III. Incorporating these
additional microscopic effects into the constitutive model typically leads to nonlinear responses
such as shear thinning in the viscometric material functions [16] as well as a bounded stress growth
in steady homogeneous elongational flows, which agree even more closely with experimental
data [13,16]. Importantly, this nonlinear response, even in an “ideal” elastic liquid makes the
characteristic relaxation time of the fluid, defined typically (in shear) as λ(γ̇ ) ≡ �1(γ̇ )/2η(γ̇ ), rate
dependent. Consequently great care must be taken in calculating the magnitude of the Deborah or
Weissenberg number (which are formally defined in Sec. II C below).

A useful estimate of the relative importance of elastic effects in a given flow characterized
by a typical shear rate γ̇c can often be obtained by evaluating the stress ratio [7] defined by
SR ≡ N1(γ̇c)/2τ (γ̇c). In real fluids this ratio can evolve nonmonotonically with shear rate due to
the different levels of shear thinning occurring in the first normal stress difference and the shear
stress of the fluid; it is of course identically zero for a Newtonian fluid. An extensive review of the
current state of the art in the constitutive modeling of polymer melts and solutions is given by Larson
and Desai [17]. For more complex materials, such as particle-filled viscoelastic fluids, in which a
yield stress also appears, suitable frame-invariant tensorial constitutive models are just beginning to
appear [18,19], but very few stability analyses have yet been performed for this class of materials,
which can be conveniently described as elastoviscoplastic (EVP) materials. The reader is referred
to a recent review that discusses these rheological complexities further [20].

C. Dimensionless parameters for complex fluids

For fluid mechanicians it is natural to aim to quantitatively compare experimental observations
and numerical computations of steady flows and flow stability in terms of appropriate dimensionless
quantities. However, the number of material parameters or functions required to describe a specific
complex fluid can lead to a rapid increase in the dimensionality of the problem as well as some
nonuniqueness in the definitions of material parameters.

For a fluid of density ρ and shear viscosity η, in a canonical flow with a typical velocity scale
V and length scale �, in addition to a Reynolds number Re = ρV �

η
parameterizing the relative

importance of inertial stresses O(ρV 2) to viscous stresses O(ηV/�), it is essential to also quantify
the level of non-Newtonian effects in the flow. This is commonly done through a Deborah number,
De, or a Weissenberg number, Wi. The preferred usage of each term has evolved over time and
formal definitions of these dimensionless parameters are subtly different from each other (see [21]
for additional discussion). Nevertheless, they both represent a dimensional relaxation time (which
may itself be rate dependent) compared with respect to a characteristic timescale for the flow. In
the Deborah number, the characteristic time for the flow is represented directly by an estimate
of the time over which the flow changes, whereas in the Weissenberg number, the timescale is
parameterized indirectly using an inverse shear rate. Alternatively, a dimensionless stress ratio,
SR(γ̇ ), defined in terms of the ratio of the first normal stress difference to the shear stress, can
also be used to directly quantify the level of non-Newtonian effects in the flow (as seen using the
Oldroyd-B model, described further in Sec. III, in the limit of negligible solvent viscosity).

Careful inspection of any particular research paper is required to ensure that one understands
clearly the definition being used; but a simple example can suffice here. In the steady viscometric
flow of a viscoelastic fluid in a cone-and-plate rheometer, where � is the steady rotation rate of
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FIG. 2. A map of the different viscoelastic flow instabilities that have been documented to date, with
references to selected works exemplifying the different kinematics. Please note that the references shown here
([6,22–74,262]) are numbered with respect to the papers in this Perspective article. Also note that here we have
used U to represent the flow velocity scale, instead of V as in the rest of the text.

the conical fixture and θ0 � 1 is the (very small) conical angle of the domain within which the
fluid is confined, the conical fixture generates a homogeneous deformation rate γ̇φθ = �/θ0. The
Deborah number would be properly defined in terms of a ratio of timescales between the stress
relaxation timescale and the characteristic flow timescale, Tflow ≈ 1/�, so that De = λ�. However,
the magnitude of the normal stress differences and the shear stress developed in the viscometric
shearing flow established by the rotating cone (typically) have magnitudes that scale with γ̇ 2 and
γ̇ , respectively, so that the dimensionless Weissenberg number parametrizing this stress ratio is
properly defined as Wi = λγ̇ = λ�/θ0.

These two non-Newtonian dimensionless groups, De and Wi, are of course not completely
independent, and their ratio is given simply by a dimensionless geometric factor characterizing
the flow; for example, in the cone-and-plate example above Wi/De = 1/θ0. Similar definitions
and distinctions apply in all flow domains, from viscometric flows such as a Taylor-Couette
geometry—with inner and outer radii Ri and Ro, respectively, where the gap ratio (Ro − Ri )/Ri

plays the corresponding role to θ0—to more complex geometries such as viscoelastic flow past a
cylinder or sphere, or through a contraction/expansion. One possible taxonomy, based on kinematic
distinctions, of the different viscoelastic flow instabilities that have been documented to date, is
suggested in Fig. 2.

Because of this indeterminacy and variability between different approaches and geometries,
it is good practice—particularly in stability analyses where one seeks to compare experiments
and predictions—to use only one dimensionless group as a dynamical parameter measuring the
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FIG. 3. A three-dimensional representation of the parameter space accessed in processing flows of complex
fluids. Taking ratios of each pair of axes results in new dimensionless material parameters that are independent
of the kinematics of the flow [75]. Note that here the flow velocity scale is denoted by U , instead of V as in
the rest of the text, and we have defined the Deborah number De as a ratio of stresses instead of the ratio of
timescales presented in the text.

flow strength and then report dimensionless ratios of material and geometric parameters that are
independent of kinematics to fully specify the flow situation being considered. For example, a
dimensionless elasticity number El = De/Re = λη/(ρ�2) conveniently represents the relative mag-
nitude of viscoelastic and inertial effects in a flow (or the ratio of the timescale of the fluid to
the time for vorticity to diffuse across a distance �) and is constant for a particular fluid and
geometry. In many computational studies the Deborah number and Reynolds number may be
systematically varied independently to explore the dynamical response of a system; unfortunately,
for an experimentalist this corresponds to having to perform experiments with a range of different
fluids and/or flow geometries, which can be very challenging! Another point to keep in mind is that
in numerical simulations, one can “turn off” the influence of inertia, whereas experiments typically
have some finite degree of inertia.

This problem of flow characterization is further compounded when a free surface is present due
to the additional introduction of a surface or interfacial tension coefficient (which we denote here by
σ ). We neglect more complex interfacial effects such as surface diffusivity or viscoelasticity, which
would result in yet more dimensionless parameters. It is then natural to discuss a capillary number,
Ca = ηV/σ . In principle, for viscoelastic free surface flows the locus of a particular process,
e.g., a fiber-spinning or inkjet printing or spraying/atomization operation, can then be represented
in a three-dimensionless space constructed from the Deborah number, Reynolds number, and
capillary number as sketched in Fig. 3. Taking ratios of the dimensionless parameters plotted on
each axis gives rise, respectively, to the elasticity number El = De/Re and the Ohnesorge number
Oh2 = η2

ρσ�
= Ca/Re. Additional dimensionless parameters can be defined in specific problems,

such as the Weber number We = ReCa, which is commonly encountered in analyses of jet stability.
The (as yet unnamed) dimensionless ratio of the elastic stresses and capillary pressure is also of
importance in the stability analysis of such problems and can be conveniently parameterized by the
ratio of the Deborah number and capillary number, which we suggest should be referred to as an
elastocapillary number, Ec = De/Ca = λσ/(η�).

With these ideas and scalings it becomes natural to represent experimental measurements and
theoretical analyses of the critical conditions for onset of viscoelastic flow instabilities in terms of
stability diagrams such as the one sketched generically in Fig. 4; detailed results for pipe and channel
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FIG. 4. Sketch of a canonical stability diagram for representing the onset of viscoelastic flow instabilities
in a complex fluid. The green curves show lines of constant El, while the red and blue curves show the critical
Deborah and Reynolds numbers that represent the boundaries of stability.

flows, respectively, are provided below in Figs. 21 and 22. The characteristic Reynolds number of
the flow is plotted on the abscissa and the corresponding Deborah number of the complex fluid, or
alternatively the Weissenberg number, is represented on the ordinate. The stability boundaries for
each given wave number or perturbation type correspond to bounding curves in this parameter space.
A set of exploratory experiments with a given fluid in a fixed geometry correspond to a sequence
of points that traverse along a line of constant slope El = De/Re that eventually intersects with a
stability boundary marking the critical conditions (Recrit) for onset of an observable instability. All
experiments with Newtonian fluids can explore only the abscissa of this plot and a purely inertial
instability corresponds to a critical point along this horizontal line. In macroscale flows, weakly
elastic fluids, such as dilute aqueous polymer solutions, move along lines of small slope and explore
the lower right of this parameter space. Highly elastic materials, such as gels and polymer melts,
explore the upper left portions of the plot.

Although every flow geometry and instability mode studied represents a unique stability locus
in a stability diagram such as Fig. 4, some general remarks are possible. Elasticity can either
strengthen or weaken inertial mechanisms of instability, with the precise results depending on
the geometric details of the flow geometry as well as the magnitudes of rheological parameters
such as the first and second normal stress differences (see for example the seminal studies by
[76,77]). In Fig. 4 we show schematically a case in which weak elastic effects destabilize an inertial
mode of instability (as for example in viscoelastic flow in the Taylor-Couette geometry), i.e., the
critical Re required for the instability is reduced by increasing elasticity, thus inclining the stability
locus, indicated schematically by the blue line, as shown. Conversely, small levels of inertia often
stabilize viscoelastic base flows against purely elastic instabilities, which correspond to critical loci
that intersect the ordinate axis, leading to trajectories as indicated by the red line; nevertheless,
we note that Joo and Shaqfeh have shown, for viscoelastic Taylor-Couette flow, that the purely
elastic instability is destabilized (for nonzero inertia) when the inner cylinder is rotating, while it is
stabilized when the outer cylinder is rotating [44]. The spatiotemporal characteristics of these purely
elastic and inertio-elastic modes often differ very substantially.

At large levels of both flow inertia and fluid elasticity (corresponding to the upper right of this
plot) more exotic “beasts” and complex dynamical modes of instability such as “codimension
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two” bifurcations exist; see for example the work of Renardy et al. [78]. With the definitions
introduced in this section it becomes self-evident that because the elasticity number El = λη/(ρ�2)
depends inversely on the length scale of the geometry, it is possible to experimentally access such
regimes using microfluidic devices in which the characteristic length scale is very small. Indeed for
microfluidic researchers handling complex microstructured fluids, such as blood, DNA suspensions,
or protein solutions, flow instabilities are to be expected in such devices whenever they have smallest
dimensions � � (λη/ρ)1/2.

Finally, with respect to this representation of parameter space, we note that in inertio-elastic
flow fields the speed of viscoelastic shear waves is given by cs = (G/ρ)1/2, where G ≡ |G∗| is the
magnitude of the complex shear modulus of the viscoelastic fluid [79]. It is important to note that
these viscoelastic shear waves are distinct from the sound modes associated with the bulk modulus
of the fluid and instead are associated with the transmission of perturbations through the entropic
elasticity of the underlying microstructure in the complex fluid. Since the elastic modulus may be
only of order 102–106 Pa, the resulting viscoelastic shear wave speed may therefore be quite modest.
If we neglect the role of the solvent viscosity and identify G ≈ η/λ (in which case η is dominated
by the polymer contribution), then in dimensionless form we can construct a viscoelastic Mach
number MaV = V/cs = (Re De)1/2, and lines of constant Mach number correspond to hyperbolae
in Fig. 4, as indicated by the green dashed lines. Flows at high viscoelastic Mach number result
in a change of type in the underlying constitutive equations, from parabolic (similar to a diffusion
equation) to hyperbolic (similar to a wave equation), and give rise to many anomalous phenomena
in the inertio-elastic flow of complex fluids [80]. Examples include finite upstream propagation of
vortices ahead of a blockage such as a cylinder in a channel [81,82] as well as the development
of traveling waves of elastic stress that are analogous to the Alfvén waves observed in magnetohy-
drodynamic flows [83]. We note that this topic was an active topic of discussion at the workshop,
with multiple perspectives presented; the perspective put forward by V. Steinberg is presented in
Sec. IX.

Analogous stability diagrams may also be constructed for free surface instabilities of complex
fluids, for example in terms of the Deborah number and Ohnesorge number [84] or in terms of a
capillary and Weber number [85]. For complex problems, in which multiple dimensionless material
parameters control the constitutive response of a complex fluid, the stability loci correspond to
surfaces in 3D or higher-dimensional diagrams, which can be difficult to represent graphically.
However, simpler 2D “slices” of this space are still useful graphically to represent the sensitivity of
the stability diagrams to other effects, such as the magnitude of second normal stress differences,
changes in the finite extensibility of the dissolved macromolecules, or sensitivity to the effects of
viscous heating, for example [86,87].

A particularly common, and indeed almost unavoidable, example of this kind is the role of
fluid shear thinning, which becomes increasingly important at progressively higher shear rates
(except for the case of carefully formulated highly elastic constant viscosity fluids such as “Boger
fluids” [11]). Understanding the central role of shear thinning in viscoelastic flow instabilities is
critical because both the fluid relaxation timescale and the viscosity typically decrease in most
complex fluids (with the important exception of shear-thickening materials; see, for example, [88]).
A convenient way to graphically represent these effects is by defining a (dimensionless) function
S (γ̇ ) = 1 − (d ln τ/d ln γ̇ ), which is evaluated from the flow curve measuring the shear stress τ at
a steady shear rate γ̇ [89–91]; thus, S = 0 corresponds to no shear thinning (i.e., the Oldroyd-B
limit) and S → 1 corresponds to the upper limit of a strongly shear-thinning fluid such as an
elastoviscoplastic material near its yield stress, or a shear-banding wormlike micellar solution. It is
clear from the definition of the elasticity number given above that the slope (given by El = De/Re) of
a specific fluid’s trajectory through the {Re, De} stability diagram becomes progressively shallower
under increasingly strong shearing deformations, and this can dramatically constrain the range of
parameter space that can be explored.

To briefly illustrate these ideas we show in Fig. 5 the results of a detailed study of the types of
viscoelastic flow instabilities observed in the flow of a range of dilute polymer solutions through
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FIG. 5. A stability diagram for viscoelastic flow of dilute solutions of poly(ethylene oxide) (PEO) and
hyaluronic acid (HA) through an OSCER (optimized shape cross-slot extensional rheometer) device. The elas-
ticity number of each fluid (shown by the colored lines of constant Wi/Re) is varied by changing the polymer
concentration or solvent viscosity. Two distinct modes of instability can be observed at high Weissenberg and
Reynolds numbers; the symbols mark the critical conditions for the onset of each mode of instability. Modified
from [55].

a microfluidic cross-slot device that has been optimized to generate a strong and homogeneous
extensional flow [55]. The trajectories through {Re,Wi} space followed by each fluid as the imposed
flow rate is increased are shown by colored lines. These pathlines are almost straight (corresponding
to the limit El = Wi/Re = const) but the weakly varying effects of shear thinning in the fluid
rheology slowly modulate this [corresponding to evolving values of the function S (γ̇ )]. A fully 3D
representation of this kind of stability diagram in {Re, Wi, S} space can also be constructed [90].
However, it is clear even in this 2D projection that two distinct modes of instability are observed:
a steady 2D symmetry-breaking purely elastic mode (corresponding to a transcritical bifurcation)
at high levels of fluid elasticity, as well as an oscillatory inertio-elastic mode (corresponding to a
Hopf bifurcation) that is dominant at higher levels of fluid inertia. In each case, the onset of these
viscoelastic instabilities disrupt the homogeneous elongational kinematics that are desired for an
extensional rheometric device. Understanding, exploring, and predicting these kinds of instabilities
was a major focus of this workshop.

D. Some (pre)history

Although the term elastic turbulence has grown into relatively common usage in the 21st century,
the origins of the term date back to the very beginnings of research in complex fluids. As early as
1926, Ostwald and Auerbach [92] remarked on the anomalously high pressure drops (and enhanced
fluctuations) that were required to pump certain complex microstructured fluids through cylindrical
tubes at low flow rates where laminar flow conditions were to be expected. As they noted “it is thus
a peculiarity of ammonia oleat and similar sols to exhibit, in addition to normal turbulence also a
structural turbulence.” Some 40 years later Hanswalter Giesekus [93], in his pioneering studies on
nonlinear effects of viscoelastic flows through converging nozzles and slits, carefully documented
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the apparently turbulent, i.e., strongly time-varying and highly chaotic, flow conditions that could
be achieved in nondilute polyacrylamide solutions even at moderate concentrations of 3–4 wt%
polymer.

In the years between these two papers the more applied polymer processing literature is full
of many documented instances of unstable flow fields arising from the viscoelastic nature of the
molten plastics being used in injection molding and other processing operations. The systematic
analysis of these empirical observations by Pearson and colleagues, as well as Denn and colleagues,
is particularly impactful in this regard; see, for example, the extensive reviews by these authors
[94,95]. Much of the work on polymer processing instabilities is nicely captured in the path-breaking
book by Vinogradov and Malkin [1] published first in the Soviet Union in 1977 and subsequently
in English in 1980. The term elastic turbulence appears explicitly in the index of this work multiple
times, and beautiful flow visualization images of the stress field (using crossed polarizing optical
elements to reveal flow-induced birefringence) in a molten polymer entering a planar contraction
(reproduced in Fig. 1) show the dramatic disruption in the flow field that occurs beyond a critical
flow rate, even though the relevant Reynolds number is Re � 1.

Quantitative study of such flow instabilities and the term “purely elastic instability” first appeared
in 1989 through the work of Muller, Larson, and Shaqfeh in a paper on viscoelastic Taylor-Couette
flow [23] that was fittingly dedicated to Giesekus on his retirement as editor of Rheologica Acta.
In particular, in the late 1980s and early 1990s, these researchers at Bell Labs and MIT and later at
Stanford focused on discovering and understanding purely elastic instabilities, i.e., those elastic
instabilities for which inertial forces play a negligible role, in viscometric flows. These flows
were marked by curved streamlines and the associated elastic instabilities prevented rheological
measurements in certain parameter regimes. In all instances there existed a separation of scales: a
thin gap across which there was shear, characterized for elastic fluids by the shear Weissenberg
number, Wi, and a significantly larger radius of curvature, where the ratio of gap to radius of
curvature was denoted by ε. These flows included Taylor-Couette flow, and torsional shearing
flows between parallel plates, and in a cone-and-plate flow [24,30,32]. Measurements in Boger
fluids (where the viscosity remains approximately constant and the elasticity number is high)
demonstrated that beyond a certain critical Weissenberg number, the flows were unstable, thus
bifurcating from axisymmetric shear flows to cellular 3D flows.

The linear stability of a number of canonical shearing flows and the dependence of the spa-
tiotemporal waveforms of the resulting 3D flow fields was studied in the subsequent years and
is summarized in a 1996 review by Shaqfeh [22]; see also Steinberg [96]. In particular, the linear
stability analysis and resulting eigenvalue problems that were developed to describe the experiments
demonstrated that such instabilities could be driven by the nonlinearities associated with the
upper-convected Oldroyd derivative acting on the stress and the rate-of-strain tensors. In a small
ε expansion, these critical conditions generally scaled with εWi2, which is the elastic equivalent
of the Taylor number to use the language common to the Taylor-Couette literature, or equivalently,
DeWi, where De is a Deborah number based on the time it takes a fluid element to be advected a
distance corresponding to the radius of curvature of the flow.

Although the initial Taylor-Couette studies probing the conditions for instability exhibited quali-
tative agreement between experiments and the first linear stability calculations, and had recognized
the physical mechanism underlying the elastic instability, there was quantitative disagreement,
which took some time to explore and understand. In particular, the initial linear stability theory
assumed that the observed unstable mode was axisymmetric and resulted in a time-dependent re-
sponse, but reality proved more complex: Beris and colleagues showed numerically that, in fact, the
largest growth rate corresponds to a nonaxisymmetric mode [97,98]. Experiments by Groisman and
Steinberg [102–104] found good agreement with isothermal theory based on identifying the most
unstable nonaxisymmetric mode. Investigating the underlying mechanisms further, Al-Mubaiyedh
et al. [105] showed theoretically and by numerical simulations that viscous heating can also play
a significant role, influencing the nature of the instability and affecting conclusions regarding flow
stability based on axisymmetric versus nonaxisymmetric modes. The relative magnitude of non-
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isothermal effects in a highly elastic fluid depend on the magnitude of the viscosity and relaxation
time, as well as their (typically exponential) sensitivity to temperature, through a thermoelastic
number [87]. In detail, an isothermal analysis of the Oldroyd-B model yields nonaxisymmetric
and time-dependent modes, while a nonisothermal (energetic) analysis, yields a time-independent
(stationary) but axisymmetric instability. While these finer details are inconsistent with the inter-
pretation offered for the original experimental results of Larson, Muller, and Shaqfeh, they are fully
consistent with later more detailed experimental work by White and Muller [106–108]; see also [96]
and the work by Baumert and Muller [99–101]. This understanding then sheds light on the detailed
“polymer-scale” mechanism coupling radial perturbations and polymer stretch in driving instability
in the Taylor-Couette geometry, as discussed more below.

This class of elastic instabilities was broadened by other researchers to include the Taylor-
Dean (cylindrical Couette flow with an additional pressure-driven flow in the axial and azimuthal
directions) and Dean flows (flows in curved channels) [43] as well as lubrication bearing flows
[61], which are generally not used for viscometric measurements but contain the same kinematic
elements, i.e., shear-dominated flow along curved streamline, as those in the original Taylor-Couette
studies. Researchers again demonstrated through experiment and eigenvalue analysis that the
instabilities were characterized by a critical value of the product (DeWi). An examination of the
mechanisms of all of these instabilities demonstrated at least three separate modes and mechanisms
of instability, all of which involved the interaction of the base state (either the kinematics or existing
hoop stress field) with a velocity fluctuation to locally enhance hoop stresses and further drive the
fluctuation.

All mechanisms leading to unstable conditions scaled, in the small gap limit, with DeWi. Thus,
McKinley et al. [74] suggested a scaling approach to the critical conditions, now known as the
Pakdel-McKinley scaling, namely that if one writes the Weissenberg number more generally as
Wi = τ11/(ηγ̇ ), where τ11 is the primary normal stress component along the streamlines and η the
total fluid viscosity, then the dimensionless magnitude defined as M2 ≡ DeWi could be developed
into a general criterion whose critical value signaled the onset of elastic instabilities in many
curvilinear shear flows. In particular, the onset of elastic instability is related to the characteristic
curvature of the flow and stress along the streamlines, and corresponds to exceeding a critical value
of this parameter given by

λV

R
N1

|τ | � M2
crit, (1)

where λ is the relaxation time of the fluid, V is the characteristic streamwise fluid velocity, R is
the characteristic radius of curvature of the streamline, N1 is the first normal stress difference of the
fluid, and τ is the total shear stress in the fluid.

As summarized by Poole in Fig. 2, now a plethora of flows have been demonstrated to be
elastically unstable, primarily by experimental observations and measurements. Most of these flows
involve curved streamlines and thus their instability is attributed to hoop-stress driven instabilities.
As such, they are typically characterized, in some manner, by the M parameter. The geometric
scaling has been enormously successful, as, for example, it has been shown that instability during
flow in a serpentine channel is directly related to the Dean instability [50]. Remarkably, and perhaps
surprisingly, the dependence of the instability threshold in Taylor-Couette flow predicted by the
Pakdel-McKinley criterion is in a better agreement with the experimental values than the results of
linear stability analysis carefully tailored to the fluid’s rheology [109].

As the instability develops in time, or conditions beyond the critical conditions are considered,
the dynamics of these purely elastic instabilities become increasingly complex, even at very small
Reynolds numbers. In the late 1990s, Baumert and Muller [99–101] and Groisman and Steinberg
[102–104] reported a series of experimentally observed transitions in Taylor-Couette flow involving
axial vortices developing into localized “diwhirls” and “flame” patterns followed by oscillating
states and finally disordered oscillations. Kumar and Graham [110,111] studied Taylor-Dean flow
and computed stationary nontrivial solutions with the FENE-P model that strongly resemble some of
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the experimentally observed diwhirls, showing that they arise in a nonlinear transition scenario. The
self-sustaining mechanism is related to the mechanism of instability in viscoelastic Dean flow [43],
arising from a finite-amplitude perturbation giving rise to a locally parabolic profile of the azimuthal
velocity near the upper wall. The more complex time-dependent states were later simulated, at
least qualitatively, by Khomami and coworkers [112–114]. These ideas of self-sustaining nonlinear
interactions between the velocity field and the state of stress in the flow form a robust mechanistic
basis for a transition to elastic turbulence [48].

As described further in Sec. IV, the first two decades of this century have focused on achieving
a deeper understanding and progressively unraveling the complex viscoelastic dynamics for a range
of different flow geometries and fluid rheologies. Furthermore, in more recent work, Khomami and
coworkers have focused on examining through direct numerical simulations the connection between
inertial and elastic turbulence, as well as the connection to curvature and curvature-induced elastic
instabilities (of the type described by the Padel-McKinley criterion) in strengthening large-scale
Taylor vortices at the expense of small-scale Görtler vortices as the curvature in the flow is increased
while keeping the same Reynolds and Weissenberg numbers [115]. Additional work exploring these
connections is described in Secs. IV–VI.

III. CONSTITUTIVE MODELS AND NUMERICAL SIMULATIONS
OF ELASTIC FLOW INSTABILITIES

Author: A. N. Beris, with input from G. H. McKinley, R. J. Poole, and H. A. Stone

In addition to experimental characterization, many researchers are seeking insight into this large
class of instabilities via large-scale numerical simulations. As an example, during the workshop M.
Alves presented results from RheoTool (a numerical library based on the open-source OpenFOAM®)
on cross-slot [116] and contraction flow instabilities that are purely elastic. Even though the flows
have a large region of extensional flow, there is evidence that these instabilities are again driven by
elastic hoop stresses. However, the evidence comes from calculating local fields of the M parameter
in a flow and demonstrating that the flows break symmetry and/or become time dependent when
the maximum value of M becomes sufficiently large, e.g., M > 4–5. In this context, there is a lack
of linear (or energy) stability analyses for these extension-dominated flows such as the cross-slot
geometry.

What are the underlying models used in theory/numerical simulations? For the analysis of flow
instabilities and/or simulation of highly elastic viscoelastic flows, differential models are typically
used that connect the stress and its time and space derivatives to the velocity gradient and its
time derivatives [7,117]. The simplest of these models is the upper convected Maxwell (UCM), or
Oldroyd-B model (when a Newtonian solvent viscosity contribution is added). This model originates
from a simple mechanical analog of polymer solutions corresponding to a spring and dashpot in
series, with the upper convected time derivative expressing the second-order (contravariant) tensor
generalization of the material time derivative of the stress tensor, as beautifully shown first in
the pioneering work of Oldroyd [118]. Most importantly, some time later, a formal connection
was made to an idealized Hookean dumbbell polymer structure [119]. This image of a solution’s
microstructure has allowed a number of considerable generalizations to be obtained, like the Finitely
Extensible Non-linear Elastic dumbbell with the Peterlin approximation (FENE-P dumbbell) that
allows for a finite polymer extensibility [14,119]. Other notable generalizations of the Oldroyd-B
model are the following: the Johnson-Segalman model [120] involving a nonaffine correction to
the upper convected time derivative, first proposed by Gordon and Schowalter [121]; the Giesekus
model involving a nonisotropic drag controlled by a mobility parameter [15]; and the Phan-Thien
and Tanner (PTT) model involving a dependence of the relaxation time on the stress [122].

All of these models can be described conveniently using a time-evolution equation in terms of
the stress tensor, τ. However, given the connection of microstructural models to kinetic and network
theories the stress is assumed to be related to an internal structural parameter, c, which is typically
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TABLE I. List of commonly used models along with the corresponding expressions with respect to the
conformation tensor, c, or values for materials parameters in Eq. (2). An earlier version of the FENE-P model
used f (c) = b/(b − trc). Although for b = L2 this expression reduces to asymptotically the same model for
high L values, in general, it is a different model. The L2 version is to be preferred as it is more physical,
resulting in an equilibrium value for c that is the unity tensor, I, whereas that corresponding to the b model is I
scaled by b/(b + 3).

Model ξ λ(c) α f (c) Remarks/References

Maxwell 0 λ0 0 1 Hookean or linear
dumbbell model [7];

Oldroyd-B Oldroyd-B includes
viscous stress

Johnson- 0 � ξ � 2 λ0 0 1 [120]
Segalman
FENE-P 0 λ0 0 L2−3

L2−tr(c)
L represents the dimensionless maximum

chain extensibility; 3 < L2 < ∞ [7]
Giesekus 0 λ0 0 < α < 1 1 α is an anisotropic mobility parameter [15]
Phan-Thien 0 � ξ � 2 λ0

1+εtr(c−I) 0 1 This is the linear PTT model [122];
and Tanner for a nonlinear version use λ = λ0e−εtr(c−I); ε > 0
Extended
White-Metzner 0 λ0( 1

3 tr(c)−k ) 0 1 k > 0 [127]

identified as the second moment 〈RR〉 of the end-to-end distance R vector if macromolecular
chains are involved [7]; an elastic deformation strain [123,124] can also be described in terms of
c. An advantage of this representation is that it allows for a connection to the theories of nonlinear
elasticity [124], while providing for a nonlinear thermodynamics foundation [125,126] that allows
for both a straightforward extension/mixing of models (like the extended White-Metzner model
[127]) and an evaluation for their thermodynamic consistency and Hadamard-type instabilities
[123].

Indeed, all of the above-mentioned models can be concisely represented as [126]

Dc
Dt

− (∇v)T · c − c · ∇v + ξ (D · c + c · D) = − 1

λ(c)
(τ+ + ατ+ · τ+); τ+ = f (c)c − I, (2)

where D/Dt is the material derivative, ξ is a dimensionless nonaffine motion parameter with 0 �
ξ � 2, D = 1

2 (∇v + (∇v)T ) represents the rate of deformation tensor, λ(c) represents the relaxation
time (which may be a function of c), τ+ is the dimensionless polymer extra stress, τ+ = τ/[G0(1 −
ξ )], with G0 a characteristic elastic modulus, α an anisotropic mobility parameter, and f (c) is a
model-dependent parameter representing finite polymer extensibility effects. The left-hand side of
Eq. (2) corresponds to the Johnson-Segalman derivative [120]. For most polymeric systems ξ = 0,
in which case the left-hand side of Eq. (2) reduces to the Oldroyd upper-convected time derivative,
as is appropriate for a structural material parameter connected to the Cauchy elastic strain tensor
[124].

As discussed, Eq. (2) can represent all the above-mentioned constitutive models, with suitable
choice of the model parameters, as shown in Table I; Table II summarizes the choices of the symbols
used most commonly to describe various physical quantities in this article. We note that the highest
elasticity (as, for example, determined by the magnitude of the normal stresses in shear flows) is
obtained with the Maxwell/Oldroyd-B model. Alternatively, ξ → 0, L → ∞, α → 0 [see Eq. (2)
and Table I], limits for which we recover the Maxwell/Oldroyd-B models, are values often selected
in numerical simulations/analyses seeking to maximize the effects of elasticity, such as, for example,
simulations of highly elastic, viscoelastic turbulent flow [128–131].
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TABLE II. Due to the use of different symbolic conventions by different communities, here we summarize
the choices of the symbols used most commonly in this article along with their meanings. Where relevant,
the mathematical definitions are presented in the text as the symbols are introduced. Other symbols are also
introduced in the text as needed for specific other quantities. Note that an overlying dot represents a time
derivative, e.g., γ̇ denotes the shear rate.

Symbol Meaning

ρ Density
σ Interfacial tension
v Velocity vector
V Velocity scale
t Time
� Flow length scale
γ Shear strain
τ Stress (shear or extensional, as defined in the text)
η Shear viscosity (dynamic)
ν Shear viscosity (kinematic)
λ Stress relaxation time
γy Yield strain
τy Yield stress
N1 First normal stress difference
N2 Second normal stress difference
�1 First normal stress coefficient
�2 Second normal stress coefficient
G Shear modulus
G∗ Complex shear modulus
G′ Storage modulus
G′′ Loss modulus
ε Extensional Hencky strain
ηE Extensional viscosity

Another advantage of the conformation tensor representation is that it allows checking for
numerically induced instabilities as, from theory and its physical interpretation, c is a positive
definite tensor [126]. Consequently, numerical schemes have been devised so that they guarantee
that c always remains positive definite, such as the log-conformation tensor methodology proposed
by Fattal and Kupperman [132,133] or the matrix decomposition proposed by Vaithianathan and
Collins [134]. As such, when used, the approach significantly improves the numerical stability
and allows reaching substantially higher values of elasticity (i.e., higher Wi or De numbers) [135].
Different types of stabilization techniques commonly used in computational rheology were reviewed
recently by Alves and coworkers [136].

How successful have studies using these rather idealized single relaxation mode viscoelastic
models been in describing highly elastic, viscoelastic flows? One could say fairly successful,
judging from several important accomplishments. First and foremost, these include the capability
of reproducing the polymer-induced drag reduction phenomenon in direct numerical simulations
(DNS) of turbulent flows using the above-mentioned single relaxation viscoelastic models, when the
elasticity in the flow was high enough [128–131]; e.g., see the discussion of elastoinertial turbulence
in Sec. VI. The drag reduction is observed experimentally when high molecular weight polymers
are added, usually in small concentrations, to a Newtonian solvent [137]. The DNS results, typically
carried out in a channel geometry, showed, in addition to the drag reduction that increased with
increasing elasticity in the flow, all of the main kinematic effects accompanying it, such as the
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increase in the extent of the buffer layer, the widening of the streaky structure, and the enhancement
of the larger, more coherent turbulent structures at the expense of the smaller scales, etc. [128–131].

Second, the detailed results and sensitivity analysis to the model parameters allowed one to
deduce the main mechanism behind the drag reduction, namely, the weakening of the vortical
structures (eddies) due to the enhancement of the resistance to extensional deformations induced
by viscoelasticity [128,129], as originally proposed by Seyer and Metzner [138] and Lumley [139].

Third, in the most recent of these works [130,131] the analysis of the underlying mechanism
revealed further details of the reasons for the experimentally observed maximum drag reduction
[140]. In this respect, worth mentioning are the results of a recent linear stability analysis of a
highly elastic viscoelastic pipe flow that showed it to be linearly unstable for a certain range of the
parameters of the Oldroyd-B fluid model [141,142]. Moreover, linear stability analysis and direct
numerical simulations of a highly elastic viscoelastic channel flow demonstrated the presence of an
“arrowhead” 2D wave instability for a certain range of parameters of a FENE-P model [143,144]—
see the relevant discussion in Sec. VI A.

The successes just described in extracting new physics out of highly elastic but rather idealized
models raise the question as to how accurately the models, in the limit of high elasticity, can predict
real polymer flow behavior. Of course, this depends on the complexity of the polymeric system.
Research along these lines, involving much more accurate (but also much more highly time con-
suming from a computational stand point) microscopic models, along with a comparison to dilute
polymer solutions [145,146], has shown that it may be possible to make quantitative predictions
if some modifications are implemented to the description of the friction drag on the individual
beads in the microscopic multibead models used. Thus, the fact remains that microscopic multibead
models still need to be used, which is not very hopeful from a macroscopic, continuum mechanics,
viewpoint. However, some early work on a modified FENE-P model (using two conformation tensor
parameters instead of one) has shown that it may still be possible to capture those nonlinear effects,
which arise primarily due to the non-Gaussian microscopic distribution of the deformation of the
polymer chains and which are reflected in hysteresis phenomena [147]. This is therefore an avenue
that still remains to be exploited. Still, for more complex physics, such as presented by concentrated
polymer solutions and melts [148,149], or micellar solutions [150,151] or under confinement [152]
and especially in the presence of entanglements [149], additional components in the models may be
needed as outlined in the referenced papers. A particular outstanding challenge for these models
are correct pressure-drop predictions for well-characterized dilute polymer solutions in mixed
kinematics flows [68].

IV. TRANSITION TO ELASTIC TURBULENCE

We have seen that even relatively “simple” polymeric flows at low Reynolds numbers can become
unstable. Beyond the instability we expect the flows to be more complicated; indeed, features
consistent with “turbulence” have been identified. Here we describe some of the challenges and
puzzles raised by recent research on elastic turbulence in 2D and 3D flows, especially parallel shear
flows, such as pressure-driven flows in channels and pipes.

A. Taylor-Couette flow

Author: H. Stark

One archetypical geometry for studies of purely elastic instabilities in flows with curved
streamlines is the Taylor-Couette geometry. In simulations of this configuration, what is especially
surprising is that all unstable modes that have been computed so far rely on the 3D character of
the flow. This topic was addressed during the workshop by H. Stark, who presented numerical
simulations of two dimensional (i.e., zero axial wave number) elastic Taylor-Couette flow using
RheoTool. At large enough Wi, the elastic turbulence that had been reported by Steinberg and
coworkers in serpentine channel flow and plate-plate flows [50,87,96,153] appeared.
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FIG. 6. Order parameter � = S(t ) vs Weissenberg number Wi for 2D Taylor-Couette flow with a wide
gap. The dashed line indicates the fitted scaling law beyond the elastic instability. Upper inset: Secondary flow
strength S(t ) plotted vs t for Wi = 16.3. Lower inset: Flow resistance quantified by the azimuthal stress on the
outer cylinder plotted vs Wi. Adapted from Ref. [154] with permission from EPL, copyright (2018).

In particular, using the Oldroyd-B model for numerical simulations, van Buel and Stark re-
ported the onset of the elastic instability towards elastic turbulence in the 2D Taylor-Couette
flow with a wide gap [154]. They locate the instability by an order parameter � = S(t ), which
is the time average of the secondary-flow strength S(t ) that measures the overall deviation
from the Taylor-Couette base flow. The upper inset of Fig. 6 shows a typical example for S(t )
beyond the critical Weissenberg number Wic ≈ 10 and reveals the irregular nature of the secondary
flow. The continuous increase of the order parameter with Wi in Fig. 6 indicates a supercritical
instability that is accompanied by an increase in the flow resistance.

Furthermore, for the spatial power spectrum of the secondary flow along the azimuthal direction,
a power-law decay m−ζ with exponent ζ > 3 for all Wi > Wic was reported [154]. This result
is consistent with a theoretical bound on the exponent ζ [155]; note that we do not expect the
Kolomogorov scaling k−5/3 of inertial turbulence since elastic turbulence is initiated by elastic
stresses. Also, the exponent α of the temporal power spectrum was found to be generally smaller
than ζ [154], hence, does not obey Taylor’s hypothesis for inertial turbulence that demands that
the exponents are equal [156]. Only for small Wi was the exponent α > 3, which is considered
to be a signature for turbulent flow and was measured in several experiments [48,157]. Groisman
and Steinberg suggested that the reduced value of the exponent α found in 3D Taylor-Couette flow
indicates that the flow is transitional [153], and not fully in the elastic turbulence regime, due to the
large shear strain component in Taylor-Couette flow with a small gap and a possible increase in the
Wi needed to generate the coil-stretch transition of individual polymers [158].

Typically, changes to the flow geometry or boundary conditions are used to passively control
the onset of the elastic instability and elastic turbulence [87,159–161]. In this spirit, van Buel and
Stark realized active open-loop control in simulations of the 2D Taylor-Couette flow [162]. They
apply a time-modulated shear stress by periodically reversing the rotational velocity of the outer
cylinder. The modulation frequency is quantified by the Deborah number, the product of frequency
times stress relaxation time. The insets of Fig. 7 show how the secondary-flow strength of the
turbulent velocity field decreases with increasing De until a modulated laminar flow remains. For
high modulation frequencies the elastic stresses cannot fully build up in order to generate turbulent
flow. The transition from laminar to turbulent flow is again supercritical (Fig. 7) and for larger
Weissenberg numbers a larger critical frequency (or Dec) is needed to suppress elastic turbulence.
Note that the different curves in Fig. 7 collapse onto a master curve when plotting �/Wi3/2 vs
De−1 − De−1

c .
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FIG. 7. Active control of elastic turbulence. Order parameter vs inverse Deborah number, De−1, for
different Wi; here De is defined as the product of the outer cylinder reversal frequency and the fluid stress
relaxation time, while Wi is defined as the product of the outer cylinder maximum angular velocity and
the fluid stress relaxation time. Insets: Secondary-flow strength vs time for different De at Wi = 21.4. The
time-modulated driving is switched on at t = 250. Adapted from Ref. [162].

B. Parallel shear flows

In the sections that follow we discuss both experimental observations, including instabilities
and later fully developed turbulence, and associated theoretical attempts to describe these flows in
channels and pipes. The field has come a long way. In a prior version of this workshop that was held
at the Princeton Center for Theoretical Science in 2018, the mere existence of sustained fluctuations
in viscoelastic flows in straight channels was in doubt. Three years later, their existence is now well
established, and researchers are now working on understanding the origins and mechanisms govern-
ing these observed instabilities. Even after much effort, however, there are different interpretations
offered.

1. Theoretical analyses

Author: A. Morozov, with input from P. E. Arratia, M. D. Graham,
G. H. McKinley, V. Shankar, and G. Subramanian

Modal linear stability analysis. As we have discussed above, low-Reynolds-number, polymeric
fluid flows with curvilinear streamlines are characterized by an elastic hoop stress that generates
a bulk (body) force acting on the fluid in the direction of the center of curvature, which leads to
an elastic instability and subsequently to elastic turbulence. This instability mechanism ceases to be
effective at zero curvature in flows with straight streamlines, such as parallel channel shear flow, i.e.,
based on the criterion given in Eq. (1), purely elastic hoop stress-driven instabilities are not possible
as the curvature of the streamlines decreases to zero (R → 0). Thus, a common assumption is that
parallel or rectilinear shear flows of viscoelastic fluids, such as plane Couette and Poiseuille flows,
are linearly stable in the absence of inertia [163]. This form of stability is described using linear
stability analysis, which decomposes a perturbation in the flow into normal modes, familiar from
studies of Fourier series. For solutions with the time dependence assumed to be of the form eiωt ,
eigenvalues ω with negative imaginary parts correspond to perturbations that grow exponentially in
time, thus leading to a linear instability in the limit t → ∞.

There are a number of directions that have been pursued to examine the possible linear stability
of viscoelastic flows. Motivated by the polymer extrusion instability and the problem of “melt
fracture,” Ho and Denn examined the stability of plane Poiseuille flow of a UCM fluid and
concluded, based on an eigenvalue analysis, that the flow is stable to infinitesimal perturbations
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[164]. The authors did acknowledge the possibility of the flow becoming unstable to finite amplitude
perturbations, but it was deemed unlikely. Similar results were found by Lee and Finlayson for
Poiseuille and planar Couette flows [165], by Renardy and Renardy for Couette flow using spectral
methods [166], and by Gorodtsov and Leonov [163] for plane Couette flow. A rigorous proof that
such rectilinear viscoelastic flows are indeed linearly stable was provided by M. Renardy [167], who
studied the stability of plane Couette flow of a UCM fluid. Importantly, the author cautioned that
artificial instabilities could arise from numerical discretization in simulations of viscoelastic flows.

Taken together, these results suggested that parallel shear flows of model viscoelastic fluids are
indeed linearly stable [22,168], with the exception of fluids with strongly shear-thinning material
properties [169,170]. So, it came as a surprise when Khalid et al. [171] recently reported a
linear instability in purely elastic channel flows of Oldroyd-B fluids—described further in the next
section. Although found only in a region of the parameter space that might be difficult to access
experimentally [Wi = O(103) and the ratio of the solvent to the total shear viscosity β > 0.9], these
results suggest that the linear stability analysis of parallel shear flows of simple viscoelastic model
fluids needs to be revisited. The recent work of Buza et al. [172] used the FENE-P model to show
that the instability predicted by Khalid et al. extends down to Wi = O(100), thereby making this
instability potentially observable in experiments.

Transient nonmodal growth of nonnormal perturbations. While the linear stability analyses
discussed above rule out the existence of a linear instability for a broad class of viscoelastic parallel
shear flows, they do not automatically imply that such flows remain laminar. Indeed, there are
several mechanisms that can potentially lead to flows that are very different than the corresponding
laminar ones, even in the absence of a linear instability. One such mechanism was uncovered in the
early 1990s in the field of Newtonian hydrodynamics. It relies on the observation that the dynamics
of infinitesimal perturbations introduced to a laminar flow are governed by linear equations that
often involve non-self-adjoint (nonnormal) operators [173–176]. Although the real parts of the
associated eigenvalues can all be negative, the associated eigenmodes may not be “orthogonal”
to each other, i.e., they do not represent unique, independent flow perturbations. Instead, some of
the modes become almost parallel to each other, especially for sufficiently large Reynolds numbers
[174]. For additional discussion of the transition to turbulence in inertially dominated flows, see
Sec. VI.

This nonnormality has a profound implication for the short-time evolution of flow perturbations:
an initial state, prepared as a combination of several such eigenmodes (in other words, a general
random perturbation of the form expected to be experimentally relevant) will see its kinetic energy
increase algebraically in time, reaching values that are many times larger than the initial value; in
the framework of constant coefficient differential equations with repeated roots, there are solutions
te−at , where a is (in general) a complex constant with positive but small in magnitude real part,
which grow at early times t . These solutions subsequently decrease exponentially in time, as
predicted by the modal linear stability analysis of the previous subsection. It was shown that the
maximum energy amplification that can be achieved through this mechanism in plane Couette and
channel flows is O(Re2) [173]. For sufficiently large Reynolds numbers, such strong amplification
can lead to perturbations becoming sufficiently large so that their dynamics are no longer described
by the linearized equations on which the analysis is based. Thus, if a particular linearly stable flow is
unstable to finite-amplitude perturbations (in other words, there exists a “bifurcation from infinity”),
as is the case with plane Couette and pipe flows of Newtonian fluids, nonnormal growth can amplify
small experimental noise helping to tip the system over the instability threshold.

The corresponding theory for viscoelastic nonnormal growth was developed by M. Jovanovich,
S. Kumar, and colleagues during 2008–2018 [177,178] and T. Zaki and colleagues [179,180] in
2014–2018. Specifically, it was demonstrated that even in the absence of inertia, infinitesimal
perturbations in plane Couette and channel flows can be significantly amplified [177]. Perturbations
of the streamwise velocity achieve growth by a factor of O(Wi), while the streamwise component
of the polymer stress tensor can be amplified up to O(Wi2) compared to its initial value; the time
to reach the maximum values scales as tmax ∼ λWi, where λ is the relaxation time of the fluid.
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Similar to its Newtonian counterpart, the purely elastic nonnormal growth theory predicts that the
most amplified initial flow structures comprise (almost) streamwise-independent vortices, leading to
streamwise-independent streaks [177], although other forms of stress amplification have also been
examined more recently [181].

The nonnormal growth mechanism provides a powerful pathway to significantly amplify small-
amplitude experimental noise until it becomes large enough to ignite some nonlinear process that
would sustain turbulent flow. However, the nonnormal growth mechanism does not provide any
insight into the nonlinear process. As a linear theory, it cannot predict a critical Weissenberg number
at which an instability might set in. We should also mention that although streamwise vortices and
streaks are naturally produced by this theory, their experimental observation is not a proof that
nonnormal amplification is at play in that particular flow: as discussed by Waleffe [182], these flow
structures may also be produced by other, nonlinear mechanisms.

Weakly nonlinear analysis. As already discussed above, linear stability does not imply global
stability. One of the classical examples of such behavior is Newtonian pipe flow that is linearly stable
for all Reynolds numbers but is unstable when a sufficiently large perturbation is added to the flow
[183]. In the early 2000s, Bonn, van Saarloos, Morozov, and collaborators [184,185] proposed that
viscoelastic parallel shear flows exhibit analogous behavior. Using weakly nonlinear analysis, the
authors in [184] tackled an interesting observation, namely that the fracture instability in polymer
melts, which occurs when the solution flows out of a slit or “die,” seems to occur at an approximately
constant value of Wi. Using the UCM fluid model, it was then shown that viscoelastic Poiseuille
flows could exhibit a nonlinear “subcritical” instability due to normal stress effects; the flow was
predicted to become unstable at Wic ≈ 5. This analysis was followed by experiments [185] that
showed melt fracture instability at Wi values that are quantitatively similar to those predicted by the
nonlinear expansion theory [184].

Subsequent analysis by Morozov and van Saarloos [186,187] for plane Couette and Poiseuille
geometries showed that the viscoelastic flows could be unstable to finite-amplitude perturbations
without curved streamlines or inertia. They developed a novel amplitude-equation technique that
constructs a nonlinear solution as a power series in its amplitude (relative to the laminar flow), with
the lowest-order term being the least-stable eigenmode of the linear stability analysis. Morozov and
van Saarloos found that plane Couette and channel flows of Oldroyd-B fluids exhibit subcritical
instabilities for Wi � 3 and Wi � 5, respectively. The nonlinear flow structures predicted by this
analysis are traveling-wave solutions, similar to their Newtonian counterparts [183,188]; for channel
flows their spatial profiles are reported in [187]. Their origin can be understood as a two-step
process. While the underlying laminar flow has straight streamlines, and is thus linearly stable
according to the Pakdel-McKinley criterion [6] [Eq. (1)], a slowly decaying perturbation with
curvature in its streamlines can drive an instability. This perturbation of a perturbation scenario
then leads to a finite-amplitude threshold.

To understand the relevance of these solutions to purely elastic turbulence in parallel shear
flows, Morozov and van Saarloos yet again drew an analogy with Newtonian turbulence in pipes
and rectilinear channels [183,188]. Our current understanding of the transition in these flows is
centered on the exact solutions to the Navier-Stokes equations discovered by Nagata [189], Waleffe
[190], Hof [191], and others. These solutions, often referred to as exact coherent structures or exact
coherent states (ECS), are either traveling waves or periodic orbits that comprise streamwise streaks
and vortices, and instabilities connecting them; they are generated through a self-sustaining process
uncovered by Waleffe [190,192]. Importantly, ECS are linearly unstable: their vicinity in the phase
space contains many attractive and a few repulsive directions [183,188], and a typical turbulent
trajectory performs a pin-ball-type motion among those coherent structures. While each of them is
regular in space (i.e., they visually appear to be relatively simple), an instantaneous snapshot of the
flow caught between many ECS does look turbulent. This scenario is at the frontier of the current
research in Newtonian turbulence and there are strong early indications that it persists sufficiently
far away from the transition [193]; the role of ECS in the Newtonian transition is discussed further
in Sec. VI below, in the context of elasto-inertial instabilities. Morozov and van Saarloos proposed
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[187] that the solutions found in [186] are the viscoelastic counterparts to Newtonian ECS, and,
while not being directly observable, they play a role in organizing the phase space dynamics of
purely elastic turbulence in parallel shear flows.

It is important to note that the weakly nonlinear analyses presented above are the only theoretical
results on nonlinear structures in purely elastic channel and pipe flows currently available, to our
knowledge. Although suggestive, they are obtained by an approximate technique; also their linear
stability is currently unknown. A significant amount of new research in this area is needed before
the analogy with Newtonian turbulence, as proposed by Morozov and van Saarloos [187], can be
made more exact. Indeed, to our knowledge, even for planar Couette flow, there are currently no
results available beyond the work by Morozov and van Saarloos cited above.

2. Experimental results of Arratia and colleagues

Author: P. E. Arratia, with input from M. D. Graham, G. H. McKinley,
A. Morozov, V. Shankar, and G. Subramanian

Experimental evidence of nonlinear instability has been hard to come by. While the hysteretic
behavior presented in [185] is consistent with a nonlinear instability, it was unclear whether the
instability originated inside or outside of the flow domain. A subsequent experimental study on
the stability of viscoelastic flows inside a cylindrical straight pipe did find unusually large velocity
fluctuations far downstream for the initial perturbation, but the subcritical nature of the instability
was not established and no hysteretic behavior was reported [194].

Thus, it was particularly notable when in 2012, Arratia and coworkers [26] provided experimental
evidence of such nonlinear subcritical instability in a straight microfluidic channel, as shown in
Fig. 8. A linear array of upstream posts provided the initial (finite amplitude) perturbation, and
the researchers found large and sustained velocity fluctuations far downstream from the initial
perturbation; no fluctuations were found without perturbations, indicating that viscoelastic flows are
indeed linearly stable. In addition, the transition to this nonlinear state was found to be hysteretic
upon the increase or decrease of the flow rate, which is a typical behavior of a subcritical bifurcation.
The flow became unstable at Wic ≈ 5, in apparent agreement with the theory of Morozov and van
Saarloos [186]. Subsequent work has shown that the nonlinear state possesses features of elastic
turbulence [195], and a flow resistance law (pressure drop as a function of flow rate) that is nonlinear
with Wi, followed by drag reduction [196] (which, intriguingly, seems to occur in other geometries
as well [197,198]). However, experiments have yet to report the existence of traveling wave solutions
predicted by Morozov and van Saarloos [186].

An important question is whether the evidence provided by Arratia and colleagues conform to the
picture of nonnormal transient growth. Such a scenario predicts that a nonmodal perturbation should
first grow algebraically before decaying exponentially in time. In the Lagrangian view, the scenario
translates into a spatial region with large perturbations followed by a region where they decay.
Experimental data, on the other hand, show that the velocity fluctuation levels remain essentially
constant while moving downstream [26]. Nevertheless, one expects nonnormal growth to be a part
of the mechanism that sustains elastic turbulence, but perhaps not the cause of it. This, however, is
still an open question as the new results by Steinberg and colleagues suggest, as discussed next.

3. Experimental results of Steinberg and colleagues

Author: V. Steinberg

N. Jha and V. Steinberg undertook experiments similar to the Arratia group but with a somewhat
different geometry. The experiments of Steinberg and colleagues were conducted in a long channel
with the width/height ratio = 7 and length/height ratio = 950 using channels with a height of
0.5 mm, i.e., of a large aspect ratio compared with a square channel cross-section used in the Arratia
group’s experiment. It is possible that this difference is one of the reasons for the difference in
some of the unexpected flow states observed both at transition and beyond, such as in the observed
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FIG. 8. Nonlinear elastic instability in a microfluidic channel flow. (a) Experimental setup showing the
initial linear array of cylinders followed by a long parallel shear flow region. (b)–(d) Space-time dye patterns
for the case with 15 cylinders for Newtonian and polymeric fluids measured far downstream. (e) Normalized
velocity fluctuations as a function of initial perturbation (n) and Wi showing the appearance of two branches.
(f) Hysteretic behavior, a hallmark of nonlinear subcritical instabilities, is found for polymeric fluids. Modified
from [26].
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FIG. 9. A cycle of coherent structures in ET at Wi = 185 and downstream distances l/h = 36–41. The
normalized time t∗ = t fel, where fel is the elastic wave frequency. The quantities reported here are from PIV
measurements of velocity fluctuations reported in a reference frame moving with the average fluid velocity.
Fluctuating streamwise velocity (u′), vertical vorticity (ω′), and spanwise gradient of spanwise velocity
(∂w′/∂z) are shown in each column with their scales shown on the right as marked in the plot [198].

coherent states (CSs) e.g., streamwise rolls and streaks, and self-sustained cycling processes (SSPs).
We note that CSs are equivalent to the ECS introduced above, and discussed further later in this
article; however, in this subsection we retain the term CSs given their use in the references cited
here. Also, “elastic waves” (described further in Sec. IX) were found already at the onset to the
elastically driven flow transition and up to the highest Wi, varying from Wi = 7 up to Wi = 3500, in
this case defined as Wi = λU/h (instead of Wi = Uλ/w, where h and w are the channel height and
width, respectively) with a critical value Wic = 140 [83]. The CSs are evident in PIV measurements
of velocity fluctuations reported in a reference frame moving with the averaged fluid velocity profile,
as shown in Fig. 9, which, remarkably, resemble those observed numerically and experimentally in
Newtonian turbulence of a channel shear flow [198].

We next make remarks about the continuous transition and the manner in which the friction
factor for the pressure drop in pipe flow varies with the flow speed (here quantified by Wi). The
first key observation at Wi � 1 and Re � 1 (i.e., El � 1) is the small magnitude of the exponent
characterizing the power-law growth of the friction factor with the order parameter (Wi − Wic),
which appears to have a value of 0.125 (in contrast to 0.5 for the normal mode instability) as shown
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FIG. 10. Dependence of the normalized friction factor Cf /Clam
f on Wi for three values of nondimensional

distance from the third layer of cylinders (at l/h = 0) l/h: (i) −30 to 16 (inset), (ii) 26 to 82 (filled circle),
(iii) 200 to 250 (open circle), and (iv) Newtonian solvent 26 to 82 (filled black square). Inset shows Cf /Clam

f vs
Wi across three rows of cylinders [198].

in the data reported in Fig. 10. This distinguishes the elastically driven transition in a straight channel
flow from the continuous transition via the most unstable normal mode, where the exponent is 0.5.

Moreover, the velocity power spectra just above the instability threshold reveal the presence of a
peak of elastic waves on the top of a continuous spectrum with the decay exponent −1.7 [198]. A
continuous spectrum above an elastic instability signifies a direct transition to chaotic flow, contrary
to a continuous linear instability resulting in a single, most unstable fastest growing normal mode,
which is observed above the onset. Such a transition is characterized by algebraic growth of flow
properties with the exponent 0.5 [275] and also occurs in viscoelastic flows with curved streamlines
[96–98].Thus, another possibility of a nonnormal mode instability—which was first introduced in
Sec. IV B 1) [177–181], and whose application to Newtonian parallel shear flows is further described
in Sec. VI—should be considered.

Steinberg and colleagues characterize their experimental observations as weakly unstable non-
normal modes selected by the flow from strong perturbations at the inlet, which are further amplified
due to nonlinear self-interactions to generate CSs. The latter are self-organized into cycling SSP
in particular in elastic turbulence, where CSs, namely, streamwise rolls and streaks, are clearly
identified (Fig. 9). The SSPs are synchronized by the elastic wave frequency, and consequently
the SSP cycling frequency is equal to the elastic wave frequency. The synchronization is critical
for the existence of CSs and SSP, which is interpreted as the pumping of energy into CSs and sup-
porting the SSP [198]. This feature distinguishes the CSs and SSP from those found in Newtonian
turbulence in shear flows.

A surprising novel ingredient is the development of elastic waves above the flow transition, which
are further amplified in ET and decay in the drag reduction regime. Moreover, elastic waves also
pump energy into a secondary instability, whose dynamics destroy the counter-propagating streaks
(compare the second and third rows in Fig. 9) and bring to mind the Kelvin-Helmholtz instability
(KHI) in the flow of Newtonian fluids. However, in spite of the similarity of this KH-like instability
to the conventional KHI, the instability mechanism is strikingly different for the purely elastic case,
where the main destabilizing factor results from interaction of transverse elastic waves with wall-
normal vorticity generated by perturbations of the streaks [199].
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Finally, it should be pointed out that CSs and cycling SSP are localized only in a finite spatial
range inside the channel flow. Further downstream, only chaotic velocity power spectra with power-
law decay in frequency were observed. The reason for the finite spatial range of the existence of
these structures is the spatial attenuation of the elastic waves; estimates of the attenuation length of
the elastic waves show an agreement with the observation [198].

4. Perspective

Author: A. Morozov, with input from P. E. Arratia, M. D. Graham,
G. H. McKinley, V. Shankar, and G. Subramanian

One might think that understanding fluid flow in straight channels and pipes is easy. This is
not the case at higher Reynolds numbers for Newtonian fluids, which produces inertial turbulence
approximately when Re > 2000. As described in this section, it is also not the case for low-
Reynolds-number flows of highly elastic (Wi � 1) polymeric fluids.

To summarize, the early experimental observations of Arratia and colleagues demonstrate the
existence of an elastically driven transition in a straight channel flow due to strong perturbations at
the inlet [26]. Furthermore, their results suggest the existence of a subcritical instability, which can
be viewed as the viscoelastic analog of turbulence in classical Newtonian pipe flows, except that it is
controlled by the elasticity of the fluid and not by inertia. On the other hand, the experimental results
of Steinberg and colleagues, also for a rectilinear channel flow—but with different cross-sectional
dimensions and a distinct form of imposed perturbations—suggest that strong perturbations at the
inlet are not a necessary condition to generate the elastic instability and subsequent ET in a straight
channel flow [198,200]. Instead, their experiments provide evidence for an elastic instability even
in a straight channel with a smoothed inlet and a small hole on the top plate at the middle of the
channel for pressure measurements. As a result, the transition at Wic = 125 is observed with well-
characterized “elastic waves” (described further in Sec. IX) at the onset, which are continued farther
into the ET and drag reduction regions with the same elastic wave velocity dependence on Wi − Wic
on the top of continuous velocity and pressure spectra in the transition; the latter include ET and drag
reduction regions with decay of the velocity spectra having an exponent with a magnitude smaller
than 3. Moreover, in this case they were able to visualize elastic waves propagating in the spanwise
direction towards the center by presenting them in spatiotemporal plots for three Wi values (Fig. 11).
These features are consistent with the elastic instability occurring due to nonnormal modes similar
to the channel flow with strong perturbations at the inlet, though the critical Weissenberg number
Wic is about twice as large (taking into account the approximately 2× smaller value of the longest
relaxation time). These results once more suggest a similarity to dynamics of Newtonian parallel
shear flow; see also, e.g., [143], discussed further in Sec. VI.

With reference to the generic flow stability diagram sketched in Fig. 4, it is worth noting that the
Weissenberg number values are quite different between these two experimental studies; while Arra-
tia and coworkers focused on a regime where Wi = O(10), Steinberg and coworkers, using the same
polymer solutions, focused on much higher values, Wi = O(103). Some part of the discrepancy
may be due to significant differences in the reported (typically longest) polymer relaxation times,
as different characterization methods were used—again highlighting challenges with understanding
even relatively simple flows of complex fluids such as dilute polymer solutions. Taking these results
together, as well as the results of the theoretical analyses described in the previous subsections,
suggests that it is possible that viscoelastic flows in pipes and channels are nonlinearly unstable
at low Wi, as suggested by Morozov and van Saarloos, but linearly unstable at moderate to high
Wi. Recent linear stability analysis by V. Shankar and collaborators [171] seems to suggest such a
possibility—but as summarized in this section, this question (and many others) remains unresolved.
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FIG. 11. (a) Space-time plots at −0.4 < z/W < 0.4 of the streamwise velocity fluctuations, u′(z, t ) ex-
hibiting elastic wave structures for three values of Wi. The time series are filtered via a band-pass Butterworth
filter centered on the spectral peaks to remove background noise. (b) Streamwise velocity, phase averaged at
the elastic wave frequency for Wi = 407 [200].

V. ELASTIC INSTABILITIES IN MORE COMPLEX GEOMETRIES

A. Flow past cylinders

Authors: S. J. Haward and A. Q. Shen

A circular cylinder is arguably the most fundamental shape of an object that can be used for
studying flows around obstacles. We note that extensive work has also focused on the related
problem of flow past a sphere, e.g., [202–209]; here, we focus on the case of cylinders, since it
was discussed at the workshop. Further discussion of flow past a sphere is given in Sec. VIII B. In
viscoelastic fluid flows, circular cylinders are used frequently as building blocks to create complex
geometries such as regular or random arrays that model aspects of porous media flows in 2D
[64,161,210–216], although recent experiments have also explored aspects of these flows using
sphere packings in 3D, as described in Sec. V B. Recently, there has also been interest in viscoelastic
fluid-structure interactions, where elastic instabilities at high Wi (but negligible inertia, or small
enough Re) drive the motion of flexible or cantilevered circular cylinders [217,218].

Our discussion thus far in this article has focused on polymer solutions; however, useful and
related insights also arise from studies using viscoelastic wormlike micellar (WLM) solutions. Thus,
we first describe work using WLMs to study flow past cylinders here; additional studies of WLMs
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FIG. 12. Transitions to steady asymmetric flow states in various geometries constructed from microscale
cylinders as the Weissenberg number is increased beyond a critical value Wic. (a) Flow past a single cylinder
positioned on the flow axis. Reproduced from [222] with permission from the Royal Society of Chemistry.
(b) Velocity fields for flow past side-by-side cylinders with different dimensionless intercylinder gap, G =
L1/(L1 + L2), where L1 and L2 are the cylinder-cylinder and cylinder-wall gaps, respectively. Reproduced
from [223] with permission. (c) Velocity fields for flow past two axially aligned cylinders. Reproduced from
[218] with permission from John Wiley & Sons, Inc. (d) Retardation fields for flow through a hexagonal array
of cylinders (unpublished data, S. Haward). All cases show the flow from left to right of a shear-thinning
viscoelastic WLM solution.

are described in Sec. VIII B. In particular, using a model WLM solution consisting of 100 mM
cetylpyridinium chloride (CPyCl) and 60 mM sodium salicylate (NaSal) [219,220], Haward, Shen,
and coworkers examined flows past several different configurations of slender circular cylinders
confined within microfluidic channels (see Fig. 12), with much larger depth aspect ratios than
explored in previous studies. At 24 ◦C (ambient laboratory temperature), the entangled WLM
solution has a zero shear viscosity η0 ≈ 47 Pa s, exhibits a stress plateau (shear-banding region
[221]), and in small-amplitude oscillation is well described by a single-mode Maxwell model
with relaxation time λ ≈ 1.7 s. The dimensions of the microfabricated glass geometries [channel
height, H = O(1 mm) � width, W � cylinder radius, R = O(10 μm)] ensure that inertia is always
negligible, and that the flows are approximately uniform (or 2D) along the length of the cylinder.
The Weissenberg number of the flow is defined by Wi = λU/R, where the average flow velocity in
the channel U is controlled by a syringe pump.

For flow around a single rigid cylinder located in the center of the microchannel [Fig. 12(a)],
a flow bifurcation occurs as the Weissenberg number exceeds a critical value Wic ≈ 60 [222]. For
Wi = 37.5 < Wic, the fluid passes the cylinder symmetrically, with the same flow velocity profile
on either side of the cylinder, and a straight elastic wake is observed along the flow axis downstream
of the cylinder (as seen in the retardation field). However, for Wi = 93.8 > Wic, the fluid selects a
preferred path around the cylinder, with a higher average velocity on one side than the other, and the
elastic wake becomes correspondingly distorted downstream. This symmetry-breaking transition
has been characterized as a supercritical pitchfork bifurcation [222].

The bifurcation at one cylinder influences (and is influenced by) the bifurcation occurring at
neighboring cylinders positioned adjacently [Fig. 12(b)] [223] or downstream [Fig. 12(c)] in the
channel [218]. In a hexagonal array of circular cylinders, the bifurcation at each obstacle results in
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FIG. 13. Influence of shear thinning and elasticity on the onset and development of asymmetric flow states
around a single cylinder. (a) Flow asymmetry occurs only when characteristic shear rates near the cylinder
correspond to the shear-thinning region of the flow curve. (Inset) The onset of instability is consistent with
the scaling predicted by McKinley et al., indicating that elasticity and curved streamlines in the downstream
wake provide the initial perturbation to destabilize the flow [74,225]. (b) Stability diagram constructed from
simulation results with the l-PTT model examining the interplay between shear thinning and strain hardening
(ε) [225]; in this literature shear thinning in the l-PTT model is denoted β (the label of the horizontal
axis). Panels (a) and (b) are reprinted from [225] with the permission of AIP Publishing. (c) Experimental
measurements with polymer solutions over a range of concentration also show that the asymmetric flow around
a cylinder (characterized by the magnitude of I plotted on the ordinate axis) requires both shear-thinning and
elastic effects in the fluid. Reproduced from [91] with permission.

a regular pattern of asymmetric wakes where the handedness of the asymmetry alternates between
rows [Fig. 12(d)].

We note that in all the cases illustrated in Fig. 12, the flow becomes time dependent and
apparently chaotic as Wi becomes sufficiently large. However, instability progresses from an
initial transition to a steady asymmetric flow around each cylinder. These flows all appear to be
governed primarily by the bifurcation that occurs at each obstacle for Wi > Wic. Therefore, to
correctly interpret phenomena observed in more complex flows, e.g., path selection through arrays
of cylinders representing porous media, we consider it crucial to first understand how instability
develops around a single cylinder.

Accordingly, Haward, Shen, and colleagues have invested significant efforts in this direction,
employing rheologically diverse fluids and a combination of experiments and numerical simulations
[91,222,224,225]. The comprehensive studies indicate that the instability is initiated by random
fluctuations in the downstream wake due to a combination of high elasticity and streamline curvature
close to the downstream stagnation point, i.e., a purely elastic instability of the type described by
Pakdel and McKinley [6,74,225] [Eq. (1)]. As shown in the inset to Fig. 13(a), from numerical
simulations with the simplified linear Phan-Thien and Tanner (l-PTT) model (Table I with ξ = 0),
the onset Weissenberg number for asymmetric flow scales with the blockage ratio, BR = 2R/W , in
excellent agreement with the prediction of McKinley et al. [74,225]. However, from the same set
of simulations, performed by varying BR at fixed Wi, asymmetric flows are supported only when
the characteristic shear rate near the cylinder lies on the shear-thinning region of the flow curve
[Fig. 13(a)]. As the shear rate approaches the high-shear-rate plateau region, symmetry is recovered.

By fixing the blockage ratio BR = 0.1 and varying the degrees of strain hardening, ε, and shear
thinning, denoted β, in the l-PTT model, a stability diagram is obtained in Wi-β parameter space,
where the boundaries marking the onset of asymmetric flows can be followed along lines of constant
ε [Fig. 13(b)]. The instability is clearly affected by an interplay between the shear thinning and the
elasticity of the fluid: if strain hardening is reduced, more shear thinning is required to induce the
asymmetric flow state (and vice versa) [225].

These observations are paralleled in experimental measurements using polymer solutions with a
range of rheological characteristics [i.e., by varying the shear thinning and elasticity; see Fig. 13(c)].
Here, to understand the role of shear thinning, Haward, Shen, and colleagues employ the “shear-
thinning parameter” defined in Sec. II C, S = 1 − (d ln τ/d ln γ̇ ), which is evaluated from the flow
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curve measured in steady shear [89–91]. The quantity “I” reported in Fig. 13(c) is a measure of the
degree of asymmetry in the flow obtained from the difference in flow velocity on either side of the
cylinder [91,222]. Elasticity in the wake of the cylinder is considered to depend on the magnitude
of Wi. Note that both S and Wi depend on the imposed flow velocity through the microchannel.

The colored lines in Fig. 13(c) show the trajectories of fluids with different polymer concentra-
tions through the 3D space, while the fitted surface is formed from a combination of sigmoidal
curves in S and Wi [91]. From Fig. 13(c), it can be observed that fluids with low polymer
concentrations (e.g., 50 or 100 ppm) never show significant flow asymmetry (I ∼= 0); shear-thinning
is high only when elasticity is low. Fluids with higher polymer concentrations (e.g., 200 or 300
ppm) show the onset of asymmetry as Wi is initially increased, but the flow recovers symmetry at
very high Wi due to the loss of shear thinning in the high shear-rate plateau. Fluids of very high
polymer concentration (e.g., 1000 or 3000 ppm) develop strong flow asymmetries (I → 1), which
can persist up to high Wi since the degree of shear thinning S remains significant.

The development of the steady flow asymmetry in the cylinder geometry depends on both
the degree of shear-thinning and the elasticity of the fluid in question, and the two rheological
properties share an interplay whereby strong shear thinning can compensate for weak elasticity
(and vice versa). In light of these results, it may be worthwhile revisiting the role of shear thinning
in other instances of steady viscoelastic flow asymmetries (for instance in the cross-slot geometry
[52,53,90,226]), where the initial onset of instability gives rise to regions in the flow field with
disparate shear rates.

B. Flow in porous media

Authors: A. Ardekani, S. S. Datta, and J. S. Guasto

Studies of the flow of a polymer solution through an isolated constriction or across a single
cylinder give some insight to the pore-scale flow dynamics in porous media, as noted in the
previous subsection [91,225,227,228]. However, the higher connectivity and elevated disorder
inherent in natural porous media introduce new complexities to such flows [229,230]. Being able
to predict and control viscoelastic fluid flow through porous media has several important industrial
applications, as reviewed previously in [231]. Notable examples are enhanced oil recovery (EOR)
[232] and groundwater remediation [233,234], in which addition of polymers to a displacing fluid
leads to enhanced recovery of a trapped nonwetting fluid [235–237]. Several mechanisms for this
phenomenon have been proposed: adding polymers is thought to (i) increase the viscous drag
on trapped immiscible fluid droplets that helps to mobilize them [238,239]; (ii) suppress viscous
fingering instabilities during fluid displacement [240]; (iii) impart strong spatial and temporal
velocity fluctuations induced by elastic instabilities, potentially also helping to mobilize trapped
droplets [63,241–243]; and (iv) reduce the permeability of the medium locally due to polymer
retention at solid surfaces, leading to large and heterogeneous local changes in flow that may
also help mobilize trapped droplets [244]. However, systematic studies in porous media of varying
geometries are needed to parse the influence of these different possible instability mechanisms.

The accumulation of stresses as polymers traverse successive pores can produce spatial variation
in the dominant flow features [161,197,225,245–249]. For example, when flowing around closely
separated obstacles, polymer chains can be advected from an upstream to a downstream obstacle
faster than they can relax. This interaction leads to a bifurcation of the unstable polymeric fluid flow
into two coexisting flow states between the two obstacles [214]. More recent work has shown that
in tightly ordered (lower porosity) one-dimensional (1D) arrays of multiple pores, with resemblance
to natural porous media, this interaction can produce an unexpected bistability in the unstable flow
in which the flow in each pore switches stochastically between two distinct primary structures: an
eddy-dominated structure and an eddy-free structure [65] (Fig. 14).

Numerical simulations have corroborated these experimental results, showing that even more
patterns (i.e., multistability) can arise above a critical Weissenberg number: (i) eddy on both the top
and bottom of the pore, (ii) eddy-free pore, (iii) eddy-free top of the pore, and (iv) eddy-free bottom
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FIG. 14. Experimental images of two distinct unstable flow states observed for elastic polymer solution
flow through ordered 1D arrays of pore constrictions. Images show fluid pathlines and are adapted from [65]
with permission.

of the pore [197] [Figs. 15(a)–15(c)]. This multistability reflects the formation of different regions of
high polymeric stress in the pores [Fig. 15(b)]: the accumulation of stresses as the polymeric chains
cross successive pores creates streaks of high polymeric stress that are closely coupled to the flow
structures inside the pores. Polymeric chains are highly stretched in the regions of high polymeric
stresses, preventing the flow crossing these streaks and inducing eddy formation in different parts
of the pore. Intriguingly, the simulations suggest that this multistability can actually reduce the

FIG. 15. (a) Multistability of the unstable flow of polymeric fluid through the pores of a converging-
diverging channel. (b) Trace of polymeric stress tensor inside the pores. (c) Probability density function (PDF)
of the ratio of eddies to pore area (Aeddy/Apore) at different Wi for a channel of 10 closely located pores. Aeddy

represents the total area occupied by eddies in an individual pore and Apore is the total area of the pore. Above
a threshold Wi, multistability occurs, and the eddy areas take on a broad range of values. (d) Time-averaged
pressure drop (〈�p〉) across the channels at different Wi. Images are reproduced from [197].
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FIG. 16. Experiments in which disorder reduces chaotic fluctuations in viscoelastic flows through porous
media. (Top row) Normalized, time-averaged speed field in a microfluidic pillar array for a range of geometric
disorders (Wi ≈ 4). Scale bar, 150 μm. (Bottom row) Local, normalized speed fluctuations as a function of
increasing disorder, corresponding to speed fields above. Images are reproduced from [161].

pressure drop across the channel [197] [Fig. 15(d)] because the eddies do not contribute to the net
volumetric flow through the channel; therefore, an eddy-free pore has a larger apparent width to
allow the net volumetric flow than the pore with eddies, which leads to a smaller pressure drop
across the eddy-free pore. Further experimental tests of this behavior will be an interesting direction
for future work.

Recent experiments have shown that disorder may also play a fundamental role in the stability
of viscoelastic flows through porous media [161]. Similar to single obstacles, viscoelastic flow
through an ordered 2D array of cylinders readily transitions to chaos at a critical Wicr = O(1).
However, the introduction of small deviations from crystalline order in the porous medium can
delay the transition to higher Wicr, and strongly disordered media can have largely suppressed
random velocity fluctuations (Fig. 16). The mechanism by which disorder may promote stability
is by causing a shift in the flow type [250] from extension- to shear-dominated flow. In the work
of Walkama et al. [161], as geometrical disorder increases, stable preferential flow paths emerge
and promote shear, which weakly stretches polymers in comparison to extensional flow [251,252].
This work also emphasizes the importance of Lagrangian stretch that is accrued along a polymer’s
flow path in triggering viscoelastic instability, and inspires further studies of the influence of pore
geometry on the flow behavior.

Exploring how insights developed in 1D and 2D systems relate to flows in more complex 3D
porous media [229,232–234] is an active frontier of current research. In the stable creeping flow
regime considered here, spatial correlations of velocity and pore space have been shown to be almost
identical between 2D and 3D media [229]. However, pore-scale flow instabilities in 3D geometries
can exhibit different patterns than 2D instabilities [62,81,253], inducing differences in macroscopic
flow and transport as well [254–256].

Indeed, given the observation that disorder can suppress the transition to elastic turbulence
in 2D porous media [161], it has been unclear whether and how this transition manifests in
disordered 3D media—though elastic turbulence has been speculated to underlie the long-standing
observation that the macroscopic flow resistance of an injected polymer solution can abruptly
increase above a threshold flow rate in a porous medium, but not in bulk solution [242,243,257–
261]. By directly visualizing the flow in a transparent, disordered, 3D porous medium, the
authors of [262] directly verified that elastic turbulence does arise within a disordered 3D
porous medium and used flow velocimetry to link chaotic pore-scale flow fluctuations to the
macroscopic flow resistance. In particular, the authors found that the transition to unstable flow
in each pore is continuous, arising due to the increased persistence of discrete bursts of instability
above a critical value of the characteristic Wi; however, the onset value varies from pore to pore.
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FIG. 17. The occurrence of elastic turbulence is spatially heterogeneous throughout a porous medium,
reflecting “porous individualism.” Images show the normalized magnitude of root mean square flow fluctua-
tions in different pores and at different flow rates, parameterized by a characteristic Weissenberg number WiI .
Applied flow is from left to right. Pore A becomes unstable at the lowest flow rate, as shown by the red line in
the first row. Pore B becomes unstable at the next highest flow rate, shown by the red line in the second row.
Pore C becomes unstable only at even higher flow rates. Note that flow velocity magnitude is denoted by u
instead of v as in the rest of the text. Modified from [262].

This observation that single pores exposed to the same macroscopic flow rate become unstable
in different ways provides a fascinating pore-scale analog of “molecular individualism” [263], in
which single polymers exposed to the same extensional flow elongate in different ways; the authors
therefore termed it “porous individualism,” although it is important to note that here this effect is
still at the continuum (not molecular) scale. Thus, unstable flow is spatially heterogeneous across
the different pores of the medium, with unstable and laminar regions coexisting (Fig. 17). Guided
by these findings, and inspired by the analysis of recent simulations [264], the authors quantitatively
established that the energy dissipated by unstable pore-scale fluctuations generates an anomalous
increase in flow resistance through the entire medium that agrees well with macroscopic pressure
drop measurements.

Thus, by linking the onset of unstable flow at the pore scale to transport at the macroscale, such
research is beginning to yield generally applicable guidelines for predicting and controlling unstable
flows of polymer solutions in porous media. Indeed, experimental developments using confocal
microscopy in model 3D porous media [210,230,265], defocusing particle tracking velocimetry
[266], holographic particle tracking velocimetry [267], and fast synchrotron-based x-ray computed
microtomography in real porous rocks [268,269] provide access to flows in situ that will likely
continue to refine our understanding of these complex systems.

VI. ELASTOINERTIAL FLOW INSTABILITIES

Authors: M. D. Graham, V. Shankar, and G. Subramanian, with input from A. Morozov

Ever since the iconic experiments of Osborne Reynolds in 1883 [270], it has been well known that
Newtonian pipe flow undergoes a laminar-turbulent transition when the eponymous dimensionless
parameter (the Reynolds number, Re) exceeds a threshold. The complexity of this transition was
already understood by Reynolds, as evidenced by the following remark in Ref. [270]: “it was
observed that the critical velocity was very sensitive to disturbance in the water before entering
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the tubes.” Later experiments have indeed shown that the laminar state in Newtonian pipe flow
can be maintained up to Re ≈ 105 [271]; this behavior is consistent with the current consensus
that Newtonian pipe flow is linearly stable at all Reynolds numbers [272]. The Newtonian pipe
flow transition from laminar to turbulent flow is therefore very different from that observed in
the Taylor-Couette geometry (with the inner cylinder rotating) discussed earlier in Sec. II. In the
latter case, the transition is marked by a sequence of reasonably well-defined bifurcations starting
from the initial linear instability, and leading to a gradual increase in the spatiotemporal complexity
[273]. In stark contrast, in Newtonian pipe flow (and indeed in the other canonical shear flows such
as plane Couette and Poiseuille flows), transition is abrupt, and is marked by the appearance of
localized structures known as turbulent puffs and slugs (or turbulent spots in the aforementioned
plane shear flows) that already exhibit the full spatiotemporal complexity of the ensuing turbulent
state [183,188]. Indeed, the original paper by G. I. Taylor [9] on the centrifugal instability in
the geometry that now (partly) bears his name involved a successful comparison between theory
and experimental observations of the transition from the base-state azimuthal flow. However, as
discussed below, more than a century was required after the original paper of Reynolds for the
emergence of a rigorous theoretical understanding of the Newtonian pipe flow transition.

Transition to turbulence in canonical rectilinear shearing flows, e.g., plane Couette, and plane-
and cylindrical-Poiseuille flows, of a Newtonian fluid, beyond a threshold Re is a complicated
process [183,274], largely due to the absence (plane Couette and pipe flow) or irrelevance (plane
Poiseuille) of an underlying linear instability [275]. Note that Re here is the Reynolds number based
on the half-height/pipe radius, maximum velocity of the laminar flow, and the total solution viscosity
and density. The Weissenberg number, Wi, is based on the polymer relaxation time, maximum ve-
locity of the laminar flow and the half-height/pipe radius. Nevertheless, the Newtonian transition is
now regarded as well understood from a dynamical systems perspective, with the eventual transition
being presaged by the appearance of nontrivial 3D solutions (the so-called exact coherent states or
“ECS” in short, which were first introduced in Sec. IV B 1 by way of analogy to the possibility
of nonlinear elastic structures in the inertialess limit) of the Navier-Stokes equations [276–279].
These are disconnected from the trivial laminar state and serve as a scaffold, in an appropriate
phase space, for the turbulent dynamics after transition [130,280,281]. These ECSs contain the basic
self-sustaining ingredients of transitional Newtonian turbulence, i.e., quasi-streamwise vortices and
streaks. A comprehensive review of ECS can be found in [130,188].

While the transition to inertial turbulence in Newtonian pipe and plane Poiseuille flow is now
relatively well understood as described above, recent experimental, theoretical, and computational
studies have shown that the transition scenario in viscoelastic counterparts of the above flows may
be markedly different. Both linear and nonlinear mechanisms, with no analogues in the Newtonian
realm, have been proposed for viscoelastic rectilinear shearing flows. Thus, while the focus in
Sec. IV was on instabilities of rectilinear shearing flows pertaining to the low-Re regime, this
section emphasizes the crucial role played by both fluid inertia and elasticity in destabilizing the
laminar base state, and the focus is on what may be appropriately referred to as “elastoinertial”
instabilities. In Sec. VI A below, we begin with the well-known drag-reducing effect of polymers
on fully developed Newtonian turbulence, before moving on to the mechanistic underpinnings of
turbulent drag reduction in Sec. VI B. We then summarize in Sec. VI C various transition scenarios
for viscoelastic pipe and plane Poiseuille flows for different fixed values of the ratio between solvent
and total viscosity, denoted β.

A. Turbulent drag reduction and elastoinertial turbulence (EIT)

Author: M. D. Graham, with input from V. Shankar and G. Subramanian

The addition of long chain polymer molecules to a fluid has tremendous effects on wall-bounded
turbulence, the most dramatic being the substantial reduction of the friction factor [140,282,283],
which is proportional to the pressure drop for a given flow rate (or Reynolds number). This
phenomenon has found wide use in various applications that seek energy efficiency in flow processes
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FIG. 18. Snapshots of simulations of EIT in (a) channel flow [298] and (b) pipe flow [297]. (a) Color
contours indicate polymer stretching, and lines indicate the magnitude Q of the second invariant of the velocity
gradient tensor; reproduced with permission from [298]. (b) Isosurfaces indicate Q; licensed under a Creative
Commons Attribution (CC BY) license.

[284–286]. Not surprisingly, there is also a large literature seeking to understand and/or exploit this
phenomenon.

Hence, in this section, we now broaden our perspective and focus on situations in which fluid
inertia is nonnegligible. We focus on high-Reynolds-number channel flow of a dilute solution of
high molecular weight polymer, so the ratio between solvent and total viscosity, β satisfies 1 − β �
1, and the Trouton ratio (i.e., the ratio between extensional and shear viscosities) Tr � 1. For the
FENE-P constitutive model with chain length parameter (there should be a space inserted here)
b (≡ L2), this requires that b(1 − β ) � 1. This is the regime of primary relevance for drag reduction,
where as a practical matter it is desired to keep the shear viscosity of the fluid low (i.e., 1 − β � 1),
but the extensional viscosity high [i.e., b(1 − β ) � 1]. The Reynolds number regime considered is
Re ∼ 103–104, i.e., near transition.

Important features of turbulent flow when the degree of polymer-induced drag reduction is large
include a very small Reynolds shear stress and a mean velocity profile that closely approaches the
so-called Virk maximum drag reduction (MDR) asymptote [140]. It is interesting that this profile is
nearly independent of the composition or concentration of the polymer.

With respect to mechanism, it is well known that viscoelasticity suppresses the near-wall
streamwise vortices that dominate Newtonian turbulence [287,288]. A number of studies have
captured this phenomena by studying the effect of viscoelasticity on the aforementioned ECS
solutions [289–295]. In particular, Li and coworkers [291,293] found that the ECS are so weakened
by viscoelasticity that they are no longer self-sustaining and so should fail to exist. However,
recognizing that, in general, viscoelasticity is not experimentally observed to drive relaminarization
of the flow, these authors suggested the possibility of new viscoelastic mechanisms for sustaining
turbulence and becoming unmasked as the Newtonian structures are suppressed [293].

Indeed, instead of complete relaminarization of the flow (except in narrow parameter ranges
at transitional Re as detailed later), recent studies have unearthed a polymer-driven chaotic flow
state dubbed elastoinertial turbulence (EIT), which dominates high-Reynolds-number flows at
high levels of viscoelasticity [296]. In this parameter regime EIT displays multilayered sheets of
polymer stretch emanating from near the walls [see Fig. 18(a)] and very weak, spanwise-oriented
vortices, which is in sharp contrast to the 3D quasi-streamwise vortex structures of Newtonian
wall turbulence. Similarly, near-wall localized, nearly axisymmetric vortex and stress structures
[Fig. 18(b)] have been reported in pipe flow simulations of EIT [297].
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Using computations in channel flow at Re = 1500, Shekar et al. [299] observed a narrow zone of
Wi, roughly 10–18, where the only attractor was the laminar base state. This zone separated drag-
reduced Newtonian turbulence at lower Wi and EIT at higher Wi, corroborating the experimental
observations of [300]. In this case, the laminar flow remains linearly stable in the EIT regime, but
only very small (but finite) perturbations are required to drive the flow to EIT. This observation
suggests that extreme care must be taken in interpreting experimental observations of a transition to
a very weak EIT state: what appears to be a linear instability may not be.

Before discussing the theory to understand these observations, as well as others described below,
it is first useful to recall the known structure, and the associated features, of the Newtonian eigen-
spectrum for plane- and pipe-Poiseuille flows [307]. The spectrum has a characteristic “Y”-shaped
structure, with the two arms of the Y comprising the wall modes (the so-called A branch with
modal phase speeds and decay rates approaching zero) and the center modes (the so-called P
branch with phase speeds approaching the centerline maximum and decay rates approaching zero)
for Re ∼ 1000 and higher. The (lower) stem of the Y structure corresponds to the S branch that
consists of a denumerable infinity of modes that propagate at two-thirds of the base-flow maximum
and with progressively increasing decay rates down the stem. Note that, with increasing Re, the
underlying Y template remains unchanged, while there is a progressive increase in the number of
modes along each of the three branches. This Y template characteristic of the Newtonian spectrum is
henceforth referred to as the “A-P-S” template. The Tollmien-Schlichting (TS) mode in Newtonian
plane-Poiseuille flow corresponds to a wall mode belonging to the A branch that becomes unstable
at Re ≈ 5772; Newtonian pipe-Poiseuille flow, in contrast, is known to be stable for all Re.

For large Re, the streamwise velocity eigenfunction for the TS mode displays a sharp localization
at wall-normal locations called “critical layers,” near the top and bottom walls (thus the term
“wall mode”), where the base-flow velocity equals the phase speed. A balance of inertial and
viscous effects shows that the thickness of the critical layer decreases as Re−1/3, consistent with
the aforementioned localization. Critical layers can be thought of as the most favorable positions
for energy exchange between the base flow and the fluctuations, because they are the positions
where both the fluctuations and the base flow have the same speed.

Returning to the observations of [299], EIT in this parameter regime displays polymer stretch
fluctuations localized near the wall. In particular, a resemblance was noted between the EIT
structure and the viscoelastic extension of the classical TS mode, which at the chosen parameters
is the slowest decaying mode from linear stability analysis. This viscoelastic TS mode displays
polymer stretch fluctuations that are sharply localized to critical layers near the top and bottom
walls. Similarly, resolvent analysis predicts strong amplification of this structure in the presence
of viscoelasticity. This strong amplification implies, consistent with the fully nonlinear results,
that even very weak disturbances may be sufficient to trigger EIT. We note that Page and Zaki
[302] present computations, and Haward et al. [301,303] present corresponding experiments for
viscoelastic flow over a wavy wall that illustrate amplification of perturbations in the critical layer.
Building on the above observations, Shekar et al. [304] performed direct simulations of 2D plane
channel flow with the FENE-P constitutive equation at Re = 3000, revealing the existence of an at-
tractor family denoted the “viscoelastic nonlinear Tollmien-Schlichting attractor” (VNTSA), whose
structure is virtually identical to the linear TS mode and in particular exhibits strongly localized
stress fluctuations at the critical layer position of the TS mode, as illustrated in Fig. 19. At the
parameter values chosen, this solution branch is not connected to the nonlinear TS solution branch
found for Newtonian flow and thus represents a solution family that is nonlinearly self-sustained by
viscoelasticity: the laminar state remains linearly stable, though again, as in [299], only an extremely
small perturbation is required to drive the solution away from the laminar state. This attractor loses
stability subcritically, and edge tracking can be used to show that it connects through an unstable
solution family to 2D EIT.

The results of [304] strongly suggest, but do not directly indicate, the existence of a continuous
path in parameter space between the Newtonian TS wave and EIT in channel flow. To clarify
this issue, Shekar et al. [305] used DNS to continue the VNTSA solution branch of [304] from
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FIG. 19. Snapshot of the finite amplitude Tollmien-Schlichting wave solution at Re = 3000, Wi = 10
[304]. White contours are wall-normal velocity, colors are deviations of xx polymer stretch from laminar values.
Reproduced with permission from [304].

Re = 3000 up to Re = 10 000, and then down to Wi = 0, to recover the Newtonian nonlinear
Tollmien-Schlichting attractor. Conversely, starting with the Newtonian TS attractor at Re = 10 000,
the Newtonian TS attractor evolves continuously and without hysteresis into EIT as Wi is increased
from zero to about 13—the two flows are part of the same solution family. Figure 20 illustrates the
evolution of the flow and stress fields as Wi increases. Note the resemblance between Fig. 20(d)
and Fig. 18(a). The simple sheet structures that originate with the TS critical layer structure evolve
into the multilayered structure of EIT through a process that has been denoted “sheet shedding”:

FIG. 20. Snapshots of the finite amplitude Tollmien-Schlichting wave solution at Re = 10 000 and
(a) Wi = 0, (b) Wi = 4, (c) Wi = 8, (d) Wi = 13 [305]. White contours are wall-normal velocity, and colors
are deviations of xx polymer stretch from laminar values.
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Individual sheets associated with the critical layer structure break up, with the fragments further
sheared as they travel downstream.

The linear instability to Tollmien-Schlichting waves does not arise for pipe or plane Couette
flow, so the scenario described here does not directly apply to those geometries. On the other hand,
in these geometries elastoinertial turbulence with very similar features does arise in simulations in
the same general parameter regime: namely, fluctuations localized in a layer near the wall, with a
sheetlike stress structure and little to no activity in the center of the flow as illustrated in Fig. 18(b)
[297,306]. Furthermore, while linearly stable, wall modes analogous to the TS wave do exist in these
other geometries [307] and may be subject to nonlinear critical layer excitation, and subsequent
evolution into EIT, just as the TS mode is in the channel flow case. Indeed, Zhang [308] performed
resolvent analysis for pipe flow in the same parameter regime considered here, demonstrating that
the most amplified mode has strong stress fluctuations localized in a critical layer near the wall, just
as is found by Shekar et al. [299]. See [304] for further discussion of these issues.

The work described here demonstrates a direct connection between a wall mode (the TS mode)
and EIT structures. At the same time, in more strongly viscoelastic regimes, typically El � 10−1 and
extremely high molecular weight (L2 � 105), Garg et al. [141], Chaudhary et al. [142], and Khalid
et al. [309] have found a linear center-mode instability for pipe flow and channel flow respectively,
as described in Sec. VI C. In channel flow Page et al. [143] computed the finite amplitude nonlinear
traveling wave solution that originates in the center-mode instability, finding that at finite amplitude
it exhibits an “arrowhead” structure of polymer stretching. Dubief et al. [144] study this state with
direct numerical simulations. In an experimental study, Choueiri et al. [310] also note the appearance
of “chevron”-shaped velocity fluctuation structures resembling the unstable center mode in pipe flow
up to Re = O(100) before being taken over by near-wall modes at higher Re. These results open
up the possibility that other states unrelated to the nonlinear excitation of a wall mode may play a
role in elastic and/or elastoinertial turbulence, with Reynolds numbers in the aforementioned range.
Section VI C extensively elaborates on this point.

B. Linking back to drag reduction

Author: M. D. Graham

Next, we return to the issue of the maximum drag reduction phenomenon (MDR). Based on
the results described above, the following scenario can be hypothesized: In the MDR regime, the
flow cannot stay classically turbulent because streamwise vortices are so strongly suppressed by
viscoelasticity that they cannot persist, but on the other hand the flow cannot fully laminarize
either, because viscoelastic TS waves (or something else) are nonlinearly excited by small but finite
perturbations even when the laminar flow is linearly stable. Nevertheless, weak quasi-streamwise
vortex and streak structures are experimentally observed to exist at MDR [288]. Based on these
points, MDR may be a marginal state where weak critical layer (or other) excitations keep the flow
from laminarizing and provide sufficient perturbations to the flow for the mean shear to generate
weak quasistreamwise vortices.

We provide two further comments on this hypothesis. First, for Newtonian and viscoelastic
channel flows, Xi and Graham [311] computed “edge states,” which are dynamical trajectories that
are marginal in the sense that they lie on the state-space boundary between laminar and turbulent
flow. Near transition, these states display a mean velocity profile very close to the Virk MDR profile.
Furthermore, very recent computations by Zhu and Xi [131] indicate the presence of an intermittent
process in viscoelastic channel flow involving quasi-2D structures with near-wall critical layer
characteristics and 3D quasi-streamwise structures, again with a mean velocity profile that lies on
or above the Virk MDR profile.
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C. Elasticity-induced transition scenarios in Re-Wi space

Authors: V. Shankar and G. Subramanian, with input from M. D. Graham

In this section, we focus on the role of polymer on the incipient transition from the laminar
state. Transition for viscoelastic fluids such as polymer solutions, even within the framework of the
simplest constitutive equations (the Oldroyd-B equation, for instance), is characterized by at least
two additional parameters: Wi and β [142,312]. Transition from the steady laminar base state, to
states characterized by nontrivial spatiotemporal dynamics, can occur along multiple pathways in
the Re-Wi-β space; for example, the work on purely elastic instabilities described in Sec. IV and
the opening of this section, Sec. VI, explored pathways characterized by Re = 0.

The recent prediction of a linear center-mode instability for both viscoelastic pipe and channel
flows (alluded to above) [141,142,309] is qualitatively different from the Newtonian scenario, where
pipe flow is linearly stable at all Re, while plane Poiseuille flow becomes unstable to the TS mode at
Re = 5772, a value that is much higher than the observed threshold for transition. It is important to
note that this center mode does not bear a direct relation to the Newtonian center mode, and this in
turn is due to the elastoinertial spectrum being very different, and significantly more complicated,
than its Newtonian counterpart (which has the A-P-S template described earlier in Sec. VI A). One
of the reasons for this is the presence of continuous spectra, which happen to be branch cuts, and
discrete eigenmodes can appear and disappear out of the branch cut with variation in the different
parameters. The structure of the elastoinertial spectrum in plane- and pipe-Poiseuille flows has been
discussed, in some detail, in Refs. [142,309].

The discovery of a linear instability in viscoelastic pipe flow, in particular, marks a radical
departure from the earlier literature, which had assumed this flow to be stable in the Re-Wi-β
parameter space [26,186,313]. The existence of a linear pathway to transition was also strongly
suggested by the earlier experiments of Samanta et al. [296], where the threshold Reynolds number
was independent of whether the flow was forced at the inlet or not, beyond polymer concentrations
of 200 ppm. Both recent computations of Page et al. [143] and experiments of Choueiri et al. [310]
have pointed to the connection of the center-mode eigenfunction to the eventual nonlinear state (a
novel EIT coherent structure in the computations) that emerges above threshold.

We now attempt to bring together the ideas described above, both in this section that deals with
elastoinertial transition and turbulence and in the earlier sections that focused on elastic instabilities
and transition in rectilinear shearing flows, via Figs. 21 and 22. These attempt to summarize the
transition scenarios for pipe and plane Poiseuille flows, respectively, in the Wi-Re plane for different
fixed values of β. The linearly unstable regions in the interior of the Wi-Re plane, corresponding
to the center-mode instability, are marked by thick black lines (solid, dashed, or dash-dotted) for
specific values of β, while those for other values of β are depicted by light gray lines. In both figures,
regions adjacent to the Re and Wi axes correspond to the onset of predominantly inertial and elastic
instabilities, respectively, with the former underlying the subcritical Newtonian transition.

We begin with a brief discussion of the features common to both figures, before going on to de-
scribe those unique to Fig. 22, which make the transition in plane Poiseuille flow a potentially richer
playground for both linear and nonlinear transition mechanisms. The 3D ECS-driven mechanism
that triggers the Newtonian transition becomes less relevant for weakly elastic flows on account of
the Newtonian ECSs being suppressed by increasing elasticity [289–293]. While this suppression
has been demonstrated specifically for plane Poiseuille flow, it is reasonable to conjecture that a
similar scenario should prevail for pipe flow on account of the similarity of the underlying ECSs
[142]. The suppression and eventual disappearance of the ECSs is thought to be responsible for a
delayed transition to, and eventual disappearance of, the Newtonian turbulent state. In both Figs. 21
and 22, the Newtonian-turbulent-like state is therefore confined to a region between the Re axis and
a curve that corresponds to a Re-dependent critical value of the Weissenberg number Wic. At higher
levels of elasticity, the aforementioned linear center-mode instability becomes operative.

Although the extent of the linearly unstable region depends sensitively on flow type and β, the
unstable regions for both pipe and channel flows, shown in Figs. 21 and 22, respectively, bear a
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FIG. 21. Schematic representation of various transition scenarios for viscoelastic pipe flow in the Re-Wi
plane. The laminar flow is characterized by the Poiseuille velocity profile with rectilinear streamlines. The
linearly unstable regions in the interior of the Wi-Re plane, corresponding to the center-mode instability, are
marked by a thick black line (solid) for one specific values of β, while those for other values of β are depicted
by light gray lines.

FIG. 22. Schematic representation of various transition scenarios for viscoelastic plane Poiseuille flow
in the Re-Wi plane. The linearly unstable regions in the interior of the Wi-Re plane, corresponding to the
center-mode instability, are marked by thick black lines (solid, dashed, or dash-dotted) for specific values of
β, while those for other values of β are depicted by light gray lines. Note that the critical value Rec ∼ 5772 is
defined using the laminar equivalent centerline velocity.
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close resemblance in the range 0.5 < β < 0.98. Specifically, Wic ∝ Re1/3 along the lower branch
of the unstable region, while Wic ∝ Re along the upper branch; the latter corresponds to a constant
elasticity number El, and represents an experimental path for a given flow geometry and polymer
solution. For both geometries, the center-mode eigenfunction likely gives way to supercritical
nonlinear structures that, either directly or via secondary instabilities, might underlie the observed
EIT dynamics. In this sense, the center-mode instability, for both pipe and channel flows, provides
a continuous pathway from the laminar state to the EIT (and the eventual MDR) regime. Although
not shown, the EIT and Newtonian turbulence domains overlap at higher Re, where the original
center mode gives way to a wall mode—indeed, this overlap has been found by several authors
[131,306,314]—implying that the latter transitions in a continuous manner to the former, without
an intervening relaminarization. This was believed to always be the case in earlier literature. The
vertical path shown on the right in Fig. 21 corresponds to the one in Ref. [300], which first accessed
an intermediate quasi-laminar state with increasing Wi at a fixed Re (= 3600), thereby contradicting
the aforesaid long-held belief. A vertical path at fixed Re in the Wi–Re plane implies an increase in
elasticity number El = λν/R2, introduced earlier in Sec. II C, but defined here with the pipe radius
R as the relevant length scale and ν ≡ μ/ρ. In this context, it is useful to note that in the dilute
limit, strictly speaking, both the relaxation time λ and ν are independent of polymer concentration.
Thus, in this regime, an increase in El can be accomplished only by decreasing the pipe radius R.
However, in the experiments of Choueiri et al. [300], the pipe radius R is fixed; instead, the authors
increase the polymer concentration in the vicinity of the overlap value, which results in an increase
in both λ and ν, and thence El (while, presumably, adjusting the flow rate to keep Re fixed).

Despite the above similarities, there remain significant differences between the instabilities
of pipe and plane Poiseuille flows outside of the aforementioned range of β. The center-mode
instability disappears for β < 0.5 for channel flow, while it persists down to β ≈ 10−3 for pipe
flow. The opposite limit of β → 1, discussed above in the drag reduction context, is also of particular
interest from the linear stability viewpoint. While the center-mode instability appears to be restricted
to Re > 63 for pipe flow (Fig. 21), remarkably, it morphs into a purely elastic instability for
channel flow, continuing to arbitrarily small Re for β > βc ≈ 0.9905 [171]. As a result, the “nose”
of the original unstable region in Fig. 22 begins to broaden for β → βc, eventually opening out
into a plateau that extends right up to the Wi axis for β > βc. Rather intriguingly, for β close
to βc, the lower branch (Wic ∝ Re1/3) and the small-Re plateau are separated by an intermediate
asymptotic regime with Wic ∝ Re−1; this corresponds to a constant viscoelastic Mach number, Mav

= V/Vshear = O(1 − β )−1, with Vshear =
√

(1−β )η
ρλ

being the shear wave speed. However, the implied

shear-wave signature may not be relevant to the recent observation of “elastic waves” in sheared
dilute polymer solutions [83,171]. Considerations of continuity imply that the crossover from the
intermediate scaling regime to the creeping-flow instability must pass through a special β = βc for
which the scaling Wic ∝ Re−1 should persist down to Re → 0! (As shown by the dash-dotted line
in Fig. 22.) Importantly, the aforementioned transformation of the original center-mode instability
into a purely elastic one—that in turn might give way to a turbulent state—highlights the existence
of an EIT-ET connection for channel flow (via an underlying modal pathway). This might serve as
a novel template in a search for purely elastic coherent structures.

In regions of the Re-Wi-β space where the center mode is linearly stable, novel subcritical
mechanisms likely dominate the transition process. In this regard, and as discussed in Sec. VI A,
recent work [299,304] has identified a nonlinear mechanism closely related to the stable Newtonian
Tollmein-Schlichting mode (although still disconnected from it in phase space until a Re of 104).
The fact that there is no analog of the TS instability in Newtonian pipe flow, and no evidence of a
corresponding nonlinear solution branch in the Newtonian limit, suggests that the TS-mode-based
subcritical mechanism could be specific to plane Poiseuille flow. On the other hand, as noted
in Sec. VI B, the direct simulations of EIT by Lopez et al. [297] display strong localization of
fluctuations near the wall, and the resolvent analysis of Zhang [308] demonstrates strong linear
amplification of a mode with near-wall critical-layer stress fluctuations. Both of these observations
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are fully consistent with those described by Shekar et al. [299,304] in channel flow, wherein
subcritical transition to EIT is driven by the amplification of fluctuations with near-wall critical
layer structure, suggesting a similar mechanism for EIT in pipe and channel flows. Indeed, in the
work of [299], the Reynolds number is so low that no subcritical TS branch exists in the Newtonian
limit. Returning to the case of channel flow, the recent subcritical continuation of the unstable center
mode to a nonlinear EIT structure [143] implies that subcritical mechanisms based on the center
mode might also be operative in certain regions of Re-Wi-β space, and thus the relevance of the
center mode might extend outside of the linearly unstable regions indicated in Figs. 21 and 22.

In the opposite limit of Re � 1, viscoelastic pipe and Poiseuille flows are linearly stable for
Wi = O(1) and when β is not very close to unity [142,315]. One of the proposed transition scenarios
is that of a subcritical 2D nonlinear instability [186,187], although this has been demonstrated only
for Wi = O(1) and β → 0. The existence of a linear instability at the other extreme, Wi = O(1000)
and β → 1 [171], implies the possibility of a bifurcation to a distinct elastic turbulent state. It is
therefore possible to envisage (at least) two different ET states (labeled ET1 and ET2 in Fig. 22),
in inertialess plane Poiseuille flow, depending on Wi. Even in this limit, however, there is a wide
intermediate range of β (0 < β < βc) for which the nature of the subcritical transition remains an
open question.

It is worth summarizing, in a succinct manner, the implications of the findings detailed in this
section with respect to transition to EIT in pipe and channel flows of polymer solutions. For
moderate-to-strongly elastic polymer solutions (El > 0.1, β ∼ 0.5–0.9), where transition to EIT
occurs directly from the laminar state, both experiments and theory point to the relevance of the
center mode at onset [141–143,309,310]. On the other hand, for weakly elastic dilute polymer
solutions of the type investigated in the context of drag reduction (El < 0.02, β → 1), when the
primary transition to turbulence is akin to the Newtonian one, the eventual EIT state is dominated
by wall modes that appear to be closely related to the nonlinear traveling-wave solutions identified in
[299,304]. It is worth noting that there are vast tracts of the viscoelastic parameter space that remain
to be understood from the transition perspective. For instance, for dilute solutions (with β = 0.97)
at higher El (0.02 < El < 0.5), it is the continuous spectrum that is the least stable [see Fig. 19(b)
of Ref. [309]] and may perhaps be expected to play a dominant role in the (subcritical) transition
dynamics. Future research will be necessary to disentangle the roles of wall- and center-mode-based
structures, and perhaps other structures (e.g., modes belonging to the continuous spectrum) as well,
for EIT in various geometries and parameter regimes.

D. Nonmodal scenarios

Authors: V. Shankar and G. Subramanian, with input from A. Morozov

As explained in Sec. IV B 1, “nonmodal” scenarios refer to nonexponential, algebraic growth
of perturbations at relatively early times when the flow is linearly stable—implying that the
perturbations will decay exponentially at large times. The above discussion of transition scenarios
is restricted to either new modal pathways induced by elasticity or the elastic modification of
essentially Newtonian nonmodal pathways. There also exist efforts that have highlighted novel
nonmodal pathways due to elasticity alone [177,178], or due to a nontrivial interplay of elasticity and
inertia [316]. The nonmodal pathways, in the inertialess limit in particular, point to the importance
of spanwise varying disturbances (much like the Newtonian case) that are amplified by an elastic
analog of the lift-up effect, and by an amount that increases with increasing Wi. The significance of
the essentially 3D nonmodal pathways [177,178] relative to the aforementioned 2D nonlinear modal
mechanism [186,187] requires more detailed examination; in light of this, Figs. 21 and 22 indicate
both nonmodal and modal pathways leading to the ET state (ET1 for channel flow).

The experiments reported so far [195,196] cannot reliably be used to emphasize either pathway
especially because the nonlinear elastic state accessed is for a channel with a cross-sectional
aspect ratio of unity; the sensitivity of this state to the precise form (“shape”) of the inlet distur-
bance, including the relative significance of streamwise vis-à-vis spanwise variations, remains to
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FIG. 23. Free surface instabilities in edge fracture. (a) Schematic of a cone and plate device where the
interface undergoes an instability. (b) Snapshots from simulations of the Giesekus model between rigid walls.
Note that in this figure, � is used to denote interfacial tension, while in the corresponding text we use σ instead,
and G is the elastic modulus; reproduced with permission from [333].

be established. Although the ET state has been reasonably well characterized statistically in the
aforementioned experiments, recent experiments [198] have, in channels with higher aspect-ratio
cross sections, begun exploring the underlying structural motifs that might help identify the elastic
analogs of the Newtonian ECSs. In contrast to the above, the EIT state accessed in both pipe and
channel geometries exhibits minor only spanwise variations, and this essential two-dimensionality
is consistent with the underlying modal picture [141,142,309].

VII. FREE SURFACE INSTABILITIES IN POLYMERIC FLUIDS

The previous sections described flow instabilities within bounded domains. In this section, we
address flow instabilities that arise at the free surface between a polymeric fluid and the outside
air. We do not attempt a comprehensive review, but instead focus on three specific instabilities.
The first, often termed “edge fracture,” is widely observed when a highly viscoelastic polymeric
fluid is sheared in a torsional (cone-plate or plate-plate) flow device (Fig. 23). The second concerns
the necking of a filament of viscoelastic polymeric fluid in which the constituent polymer chains
are highly entangled, in the regime where the bulk viscoelastic stresses dominate surface tension
(Fig. 24). The third concerns the breakup of a thread of high molecular weight elastic polymer in
the regime where surface tension dominates (Fig. 25).

A. Edge fracture in sheared complex fluids

Author: S. M. Fielding

Measurements of a fluid’s shear rheology are commonly performed in a torsional rheometer, of-
ten using either a cone-plate or plate-plate flow cell. In the linear viscoelastic regime, measurements
are generally well controlled and reproducible. The measurement of stronger flows is often hindered
by flow instabilities. For example, above a critical value of the imposed rate of shear, γ̇ , the free
surface where the fluid sample meets the outside air can destabilize towards a more complicated
profile, e.g., Fig. 23, despite having been neatly trimmed initially, forming an indentation of the
interface that can then invade the bulk. Part of the sample can even be ejected from the flow
cell, leading to unreliable data. This phenomenon is known as “edge fracture” [317–324]. Several
experimental strategies have been developed aimed at mitigating its effects [317,325–330].

From a theoretical viewpoint, an early insightful work [331,332] argued that edge fracture must
be driven by the second normal stress difference N2 in the fluid, positing instability to arise above
a critical magnitude |N2(γ̇ )| > σ/R, where σ is the surface tension of the fluid-air interface and R
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a preassumed surface indentation radius. Experimental work later confirmed this important role of
N2 in driving edge fracture [319,332].

More recent theoretical studies have revisited this phenomenon [333–336]. By means of linear
stability analysis, an updated criterion for the onset of edge fracture was put forward (note that the
notation has been adjusted slightly to be consistent with usage in this paper) [333,334],

1

2
�τ

d|N2(γ̇ )|
d γ̇

/
dτ

d γ̇
= 1

2
�τ

d|N2|
dτ

>
2πσ

Ly
, (3)

where τ = τ (γ̇ ) is the shear stress in the fluid, �τ the jump in shear stress between the fluid
and outside air (�τ ≈ τ , given the low viscosity of air), and Ly the gap size in the rheometer.
This updated criterion was shown to agree with the instability threshold found in direct nonlinear
simulations at low shear rates, which is the regime in which it was developed [333,334].

In the limit of low shear rates, in fluids in which the shear stress scales linearly with shear
rate and N2 scales quadratically, the criterion (3) predicts the same scaling as that of the earlier
Refs. [331,332], if the preassumed indentation radius in the earlier work is now instead identified as
the rheometer gap size. It is, however, worth noting that the updated criterion correctly predicts the
prefactor and identifies the important role of shear stresses in contributing to instability. Importantly,
the new criterion also departs markedly from the early ones in stronger shear.

The linear stability analysis of Refs. [333,334] also elucidated for the first time the basic
physical mechanism of edge fracture, which can be understood as follows. Were the interface
between the fluid and air to remain flat, the jump in shear stress across it would be consistent
with force balance. It is helpful to recognize that, with x as the flow direction, were the interface
oriented with its normal in the flow-gradient direction y, then the shear stress τxy would have to
be continuous across it. However, this perturbed interface has its normal in the vorticity direction
(z) so the shear stress τxy can jump across it. (This structure is actually the same as allowing
vorticity bands with layer normals in the vorticity direction, with a jump in shear stress τxy

between the bands, which has been discussed in the literature [337].) So imagine that a small
disturbance from a planar state now develops in the interfacial profile. This exposes the jump in shear
stress, potentially disturbing the force balance across the interface. To recover local equilibrium,
a perturbation is needed in the shear stress, and so in the shear rate. This in turn perturbs the
second normal stress, which must be counterbalanced by a perturbation to the extensional stresses
in the vicinity of the interface. The imbalance then requires a perturbation to the velocity gradient
and therefore velocity near the interface, which can be shown to enhance the original interfacial
disturbance, giving the runaway positive feedback of the edge fracture instability. The mechanism
just described resembles that of other interfacial instabilities between layered viscoelastic fluids
[338–340].

The work of Refs. [333,334] also suggested a possible route to mitigating edge fracture
experimentally. In particular, the left-hand side of Eq. (3) contains the term �τ , which is the
jump in shear stress between the fluid and outside medium. By immersing the flow cell in an
immiscible Newtonian fluid with a viscosity more closely matched to that of the original fluid,
the jump �τ will be reduced, thereby potentially mitigating the instability. Another strategy could
be to engineer a larger interfacial tension σ , again by suitable choice of the (Newtonian) bathing
medium.

In addition, the interplay of edge fracture with the bulk flow instability known as shear banding
has been considered [335,336,341]. These works show that modest edge disturbances that constitute
a precursor to edge fracture can lead to a noticeable apparent shear banding effect that can penetrate
far into the bulk, for a fluid with a relatively flat underlying constitutive relation of shear stress
as a function of shear rate [335]. Conversely, shear banding can lead to edge fracture [341]. More
generally, a complicated interplay is expected to exist between the two effects [336], potentially
informing the long standing debate concerning whether bulk shear banding occurs in entangled
polymers [321,322,342–346].
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FIG. 24. Extensional necking. (a) Experiments of exponential elongation of a filament of a viscoelastic
fluid (0.31 wt% polyisobutylene in polybutene) [348]. Modified from [349], with permission from Elsevier.
(b) Numerical simulations of the so-called pom-pom model for an imposed strain rate ε̇, with the color scale
indicative of the tensile stress [368]; see Fig. 9 of the original reference for the time of each image. Modified
from [368], with the permission of the Society of Rheology.

Notable challenges in understanding edge fracture remain. For example, the work of
Refs. [333–336] considered only fluids with a negative second normal stress difference; it would
be interesting in future studies to consider the case of a positive N2. Furthermore, these works
considered only fluids with a finite terminal relaxation time, λ, for which the shear stress τ ∼ γ̇ λ

and second normal stress N2 ∼ −(γ̇ λ)2 for low shear rates, γ̇ λ � 1. Future work should consider
non-Brownian suspensions [347], in which N2 scales linearly with shear rate.

The criterion discussed above also assumes an underlying base flow of steady shear, while edge
fracture is widely seen in transient rheological protocols, the modeling of which would require a
time-dependent underlying base state. Finally, the phenomenon of wall slip arises widely in strongly
sheared entangled polymers, and is therefore likely often to occur alongside edge fracture. The
interplay of these two widely occurring phenomena remains to be considered theoretically.

B. Extensional necking in entangled polymeric fluids

Author: S. M. Fielding

Extensional flows provide a key benchmark for the development of rheological constitutive
models of highly entangled polymeric fluids, with many nonlinear flow features being apparent
only in extension. A common experimental protocol consists of stretching out in length an initially
cylindrical filament of material in a filament stretching rheometer; see, e.g., Fig. 24. Such experi-
ments can be performed by switching on a Hencky strain rate ε̇, which is held constant thereafter, or
a tensile stress τE [350–353], or a tensile force F (which provides a closer model of some industrial
processes, such as fiber spinning [354,355]). Note that τE ≡ τzz − τrr , with direction z along the
filament’s length and r along its radius. In many such experiments, the region of the filament farthest
from the sample ends will often thin more quickly than the sample as a whole, forming a “necked”
region and finally even causing the filament to fail [356–362]. This necking instability has been
observed at constant tensile stress [363], constant Hencky strain rate [358,364], and during the
process of stress relaxation after an initial Hencky strain ramp [365].

From a theoretical viewpoint, recently criteria for the onset of necking have been developed
[366–370], separately for the flow protocols of constant imposed tensile stress, tensile force, and
Hencky strain rate, and considering necking during stress relaxation after an initial extensional
strain ramp. These criteria were initially derived analytically within a constitutive model written
in a highly generalized form, then checked to indeed apply in numerical calculations performed in
several different widely used polymer constitutive models [371] (the Oldroyd B, Giesekus, FENE-
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CR, Rolie-poly [372], and pom-pom [373] models). The focus throughout these studies was on the
case of highly viscoelastic filaments of sufficient radius that bulk stresses dominate surface tension.

For a filament subject at time t = 0 to the switching on of a constant tensile stress τE, the
Hencky strain rate ε̇ quickly attains its value prescribed by the underlying steady state extensional
constitutive curve before any appreciable necking develops. The criterion for a neck subsequently
to develop was then found to be [369]

dτE

d ε̇
> 0. (4)

This shows that, in fact, any highly viscoelastic material with a positively sloping extensional
constitutive relation τE(ε̇) must ultimately be unstable to necking in filament stretching.

For a filament subject instead to the switch-on of a constant tensile force F , a filament was
predicted to become unstable to necking in any regime where the extensional creep curve ε(t )
simultaneously has positive slope and positive curvature [369]:

d2ε

dt2

/
dε

dt
> 0. (5)

A filament subject to the switch-on of a constant Hencky strain rate was shown to be unstable
to necking if the tensile stress response shows negative curvature as a function of the accumulating
Hencky strain [366],

d2τE

dε2
< 0. (6)

A full discussion of these criteria can be found in Refs. [366–370]. They were derived within
a so-called “slender filament” approximation, in which the wavelength of necking variations along
the filament’s length is assumed long compared with the filament radius. They furthermore ignore
any effects of the endplates, beyond their role in seeding an initial heterogeneity in the way
that the filament starts to deform. In future work, it would be interesting to perform fully 3D
simulations using microscopically motivated rheological models, move beyond the slender filament
approximation, and incorporate endplate effects.

C. Instabilities in polymeric pinching

Author: J. G. Eggers

The breakup of a solution of high molecular weight, elastic, polymers, driven by surface tension,
is very different from its Newtonian counterpart, even at concentrations as low as 10 ppm in weight
[364,374]. Polymers are stretched by the extensional flow leading to breakup and resist it, resulting
in a strong increase of the extensional viscosity ηE (the extensional stress τzz − τrr divided by the
elongation rate ε̇). What would have been two or a whole series of isolated drops in the Newtonian
case, are now connected by thin threads of highly stretched material of almost uniform radius. This
is known as the “beads-on-a-string” (BOAS) structure, characterized by a strong buildup of stress
inside the threads, the extensional viscosity growing by several orders of magnitude in the process.
Since the capillary pressure inside a thread is much higher than inside a drop, the thread empties
into the drop and thins further [375], limited by the buildup of stress. In a regime where inertia
is important, it is known from the Newtonian case that so-called satellite drops of smaller size
are formed between two main drops [376]. The same is true in the elastic case, but with threads
connecting the main and satellite drops [84,377,378].

Taking into account stress relaxation, an analysis of the Oldroyd-B viscoelastic equations [379]
with a single relaxation time λ shows that the thinning of the thread (radius hthr) is exponential
[380]:

hthr = h0e−t/(3λ). (7)
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Although even monodisperse polymer solutions are known to exhibit a spectrum of relaxation times
rather than a single λ [381], (7) works remarkably well for a wide range of flexible polymer systems,
in both low- and high-viscosity solvents. The reason is that (7) is dominated by the longest relaxation
time [382], which can be estimated as the Zimm time [383]. Good agreement between λ found from
fitting Eq. (7) to experimental data and the Zimm time is found for dilute solutions [383–385],
but the case of higher concentrations is often more complicated. For example, [384,386] found a
strong (power-law) dependence of λ on polymer concentration, with an exponent that depends on
the quality of the solvent.

In order to relate the prefactor h0 in (7) to the stress, one needs to match the thread to the drop
into which it is emptying [387], as has recently been done on the basis of the full 3D, axisymmetric
Oldroyd-B equations [386,388]. Thus one can determine the extensional viscosity by measuring the
thread radius alone, knowing the surface tension σ :

ηE ≡ τzz − τrr

ε̇
= 3σλ

hthr
= − σ

ḣthr
. (8)

The remarkable feature of (8) is that it is independent of the history of the filament (for example
any prestretch), or the geometry (a dripping geometry or a free jet). Of course, this is true only in
an asymptotic sense, such that the regime of exponential thinning is long. However, eventually the
polymer reaches full stretch, and crosses over to a faster thinning law, which is observed to be linear
instead of exponential, with ηE saturating at a constant value [383,389,390].

The physical idea is that at full stretch of the polymer, the viscosity can grow no longer, and
the polymeric solution behaves once more like a Newtonian fluid, but with an elevated value of the
elongational viscosity. Indeed, a theoretical analysis [391,392] of the FENE-P model [379], which
incorporates finite extensibility, predicts an instability of the uniform thread, leading to localized
pinch solutions of the same self-similar form as for a Newtonian thread [393], but with an effective
viscosity that grows linearly with the length of the polymer. By observing the minimum radius of
the localized pinch hmin(t ), the extensional viscosity can be inferred from ηE = −3ασ/ḣmin, where
α = 0.0709 for symmetric pinching (inertia subdominant), and α = 0.0304 for asymmetric pinch
solutions (the asymptotic case for small hmin) [393].

The latter case predicts an extensional viscosity more than a factor of 10 smaller than (8), which
indeed is for a uniform thread, which is at best an unstable solution once finite extensibility comes
into play. In order to interpret thread radius data correctly, it therefore seems important to monitor
the radius of the thread in space, which can no longer be assumed uniform. A theoretical analysis
of the crossover between a uniform thread and localized pinching remains to be done.

However, as first reported in [394], uniform polymeric threads are frequently subject to a more
complicated, delocalized instability, leading to the sudden growth of many small droplets all along
the thread. The instability can proceed through several generations [394,395], producing drops of
different sizes, but the initial instability was observed to follow an exponential growth law [396],
indicative of a linear instability. While there is a superficial resemblance to the original BOAS
structure, the physical process is the opposite: a localized relaxation of stress, leading to droplets.
To differentiate between the two processes, ”blistering instability” has been proposed as a name for
the instability of a highly stretched polymeric thread.

The blistering instability cannot be understood as the linear (Rayleigh-Plateau) instability of a
Newtonian thread, but with an elevated elongational viscosity: the growth rate is at least an order
of magnitude faster than a Newtonian instability would predict [396,397]. Instead, the authors of
[395] proposed an instability localized at the end of the thread, resulting in a relaxation of stress,
followed by elastic recoil, and triggering the formation of a thinner filament. While such localized
instabilities have also been seen by others [397], they are distinct from the linear instability leading
to quasi-simultaneous growth along the entire thread.

To explain the observed linear instability, it has been proposed [398] that the coupling between
stress and the local polymer density [399,400] has to be taken into account. Density fluctuations are
automatically part of the description when deriving continuum models using kinetic theory [401],
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FIG. 25. The late stages of the blistering process of an aqueous 1000 ppm PEO solution [397]. The first
image is at t = 250 ms after the formation of the cylindrical filament; subsequent images are taken every 30
ms. A thin fiber with the small beads is drawn out of the large droplet (red box). The width of the image is
about 300 μm. Image is from R. Sattler, S. Gier, J. Eggers, and C. Wagner, Phys. Fluids 24, 023101 (2012);
licensed under a Creative Commons Attribution (CC BY) license.

but are usually neglected in continuum descriptions. The stress-density coupling results in a flow of
polymers toward regions of high stress—this is true independent of the flow type [399]—leading
to further stress relaxation in polymer-poor parts of the thread, driving an instability. The idea of a
nonuniform polymer density is consistent with the observation that for polymer concentrations of
above 1000 ppm, threads eventually solidify and never break [396,397,402,403].

Based on the linear stability analysis of a uniform thread in the exponentially thinning regime (7)
[398], a transition is expected to take place when the thread radius is smaller than the “blistering”
radius

hbl ≈
√

Dλ, (9)

where D = kBT/(6πηsa) is the diffusion constant of the polymer [381]. Here ηs is the solvent
viscosity and a ∝ M1/2

w the polymer radius, so that D decreases strongly with molecular weight Mw.
The prediction (9) has been confirmed experimentally in [385], varying D and λ independently. This
was achieved using two different polymers, whose relaxation times have a different dependence on
temperature.

It is, however, worth pointing out that as nonlinear effects become more important, and phase
separation progresses, the blistering dynamics can become remarkably complicated, as illustrated
by the sequence shown in Fig. 25. As the thread evolves, droplets of widely varying size are created
on the thread, in a manner that seems difficult to predict. However, there are also some organizing
features, like the sequence of smaller and smaller drops highlighted in the red box, which a partially
solidified thread draws out of a drop. Relating such small-scale features to a fundamental description
of polymer solutions appears to be a daunting yet worthy challenge!

VIII. FLOW INSTABILITIES IN NONPOLYMERIC SYSTEMS

The previous sections focused on flow instabilities of polymeric fluids (with a brief discussion
of some instabilities exhibited by viscoelastic wormlike micellar solutions in Sec. V A). In this
section we discuss briefly some features of the flow and instability of three other classes of materials
with complex rheological characteristics: yield stress fluids, wormlike micelle solutions, and liquid
crystals.
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A. Yield stress fluids

Author: S. Hormozi

In many industrial and natural settings, we often deal with yield stress fluids. Examples include
natural muds, cement pastes, injectable hydrogels, biological fluids, and hygiene products. Yield
stress fluids have a threshold in stress, namely the yield stress, above which they flow like a nonlinear
viscous fluid. In the past, the main research activities have been focused on yield stress fluids with
inelastic properties (e.g., natural muds). Therefore, ideal yield stress models or viscoplastic models,
such as Bingham and Herschel-Bulkley, have been used by researchers to address flows involving
a yield stress [404]. In the ideal yield stress models the shear rate is set to zero when the second
invariant of the deviatoric stress tensor falls below the yield stress. In these flow regions, the effective
viscosity becomes infinite, the material is unyielded, and the state of stress is undetermined. We refer
the reader to the recent book edited by Ovarlez and Hormozi [405], which includes several lectures
on theoretical, computational, and experimental approaches in viscoplastic fluid mechanics.

However, recent experimental studies show that even a slight elasticity in polymer-based yield
stress test fluids has an essential role in the flow dynamics. For example, in the absence of inertia,
the loss of the fore-aft symmetry and the formation of the negative wake are observed when
a sphere settles in a yield stress fluid (see, e.g., [406,407]). Also, Firouznia et al. showed an
asymmetric disturbance velocity field around a neutrally buoyant sphere in Carbopol gels (i.e., an
accepted model yield stress test fluid) subjected to linear shear flows. Additionally, the authors
showed that the trajectories of two spheres are asymmetric in the absence of contact [408]. None
of the aforementioned observations can be explained via ideal yield stress models that produce
symmetric flow solutions. However, the loss of symmetry and reversibility can be explained by
including viscoelastic effects in modeling flows of yield stress fluids around obstacles [409,410].
In addition, applications in industry frequently utilize yield stress fluids for rheological innovation,
e.g., designing injectable hydrogels and engineering inks for additive manufacturing, which are
advantageous as these materials are self-supporting and hence preserve their shape. These new
polymer-based gels have substantial elasticity as well as a yield stress.

It is only relatively recently that soft matter scientists have begun to incorporate elastic effects
into constitutive equations for yield stress fluids. For example, Saramito proposed a constitutive
law in which the material behaves as a nonlinear viscoelastic fluid above the yield stress and as a
nonlinear viscoelastic solid below the yield stress [18]. Modeling practical yield stress fluids via
this constitutive description results in an unrealistic zero value of the loss modulus below the yield
stress since the deformation of an ideal Hookean solid remains in phase with the imposed strain.
This issue has been resolved in recent models where McKinley and coworkers have developed
a class of elastoviscoplastic constitutive models adapted from ideas in the nonlinear plasticity
literature, collectively known as isotropic and kinematic hardening (IKH) [411,412]. The evolution
of the yield stress is captured through an internal tensorial back stress, which describes the residual
stresses that develop in the microstructure as it is deformed elastoplastically prior to yield. This
framework results in a set of Oldroyd-type evolution equations that contain up to nine material
constants, which can be determined using a sequence of steady and time-varying viscometric
flows. The aforementioned constitutive laws can be used in numerical simulations to predict
nonviscometric flow fields. The comparison of the results with experimental observations then
provides a basis for further improvement of such constitutive laws.

To our the best of our knowledge, the stability analysis of elastoviscoplastic fluids has not yet
been performed. As far as the yield stress property is concerned, the first study of the hydrodynamic
stability of a Bingham fluid came more than a century after the Newtonian equivalent, and even
plane channel flow was studied only recently [413]. The primary assumption in these efforts is that
yielded surfaces remain invariant as instabilities develop, which is an approximation that leads to
mathematical anomalies [414]. There is a dearth of literature in this area, with only a few weakly
nonlinear and nonlinear (energy) stability results [415–418]. The difficulty arises because, for yield
stress fluids, the nonlinearity of the problem is not only in the inertial terms, if the Reynolds number
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is finite, but also in the shear stress/shear rate relationship and in the existence of unyielded regions,
which are defined in a nonlocal fashion even for simple flows. Therefore, the gap between linear and
nonlinear theories is much broader and more complex than with Newtonian fluids. Therefore, it is
essential to study how the knowledge of the stability of the ideal yield stress models can be extended
to practical elastoviscoplastic fluids. To further our ability to design, predict, and optimize flows of
elastoviscoplastic fluids, we must first build new scientific knowledge regarding the behavior of
these fluids.

B. Wormlike micellar solutions

Author: J. Esteban López-Aguilar

Wormlike micellar solutions (WLMs) are materials of wide use in industrial and technological
applications due to their versatile rheological properties, i.e., they are thixotropic, shear-thinning,
strain-hardening, and softening viscoelastic fluids, capable of displaying shear banding and plas-
ticity [419–422]. WLMs are utilized in home-care and health-care products, such as shampoos,
soaps, detergents, pharmaceuticals, and biocompatible drug-delivery systems; in the oil industry,
WLMs are used as drilling and reservoir stimulation fluids, drag-reducing agents in pipelines and
lubricants, and emulsifiers, among other numerous uses [419–421]. The rheological properties and
applications of WLMs are promoted by their time-dependent internal structure, which may be
broken down and rebuilt under deformation. Accordingly, WLMs are also referred to as “living
polymers,” since they can relieve stress, in addition to undergoing reptation, with a mechanism of
dynamic construction-destruction of their internal structure [421,423]. Indeed, wormlike micellar
fluids appear as one example of soft matter that intimately links the internal structure of the fluid
with its macroscopic response [423].

Instabilities in wormlike micelles. These complex fluids display a large variety of instabilities
ranging from classical flow segregation in the form of shear banding in simple shear flow [422]
to complex spatiotemporal instabilities accompanying complex deformations [419,423]. Here the
interplay between viscoelasticity (common with polymeric systems) and the complex internal-
structure dynamics triggers fascinating macroscopic responses when using typical surfactants, e.g.,
cetyltrimethylammonium bromide (CTAB), cetylpyridinium chloride (CPyCl), cetyltrimethylam-
monium tosylate (CTAT), combined with salts, such as sodium salicylate (NaSal) or sodium chloride
(NaCl), in water [419–423].

The following benchmark non-Newtonian fluid mechanics flows have been studied experimen-
tally and theoretically for WLM solutions:

(i) Sphere sedimentation. Experimental studies of the sedimentation of smooth spheres in WLM
solutions report a common phenomenology of sphere oscillations beyond a critical speed threshold
and strong negative wakes behind the sphere [206,207]. Such observations have been attributed
to complex dynamics in the construction and destruction of the fluid’s internal structure and its
viscoelasticity, described using an extensionally based Deborah number, which permits consistent
steady-to-unsteady flow classification [209,424–429]. These features have been little explored
computationally, with the first studies provided by Sasmal [430], using the Vasquez-Cook-McKinley
(VCM) [151,431–433] and Giesekus models, and by López-Aguilar et al. for the BMP + _τp model
[434].

(ii) Flow past a cylinder. This benchmark flow has attracted attention in single and multiple-unit
arrays, in which transitions occur from liquidlike symmetric flow regimes at relatively low flow rates
or cylinder velocities up to gellike tearing responses, which have been observed experimentally by
Gladden and Belmonte [435]. Moss and Rothstein [436] performed experiments keeping the cylin-
der fixed in a channel and the WLM solutions flowing around it with pressure-drop measurements
revealing three distinct phases: (1) at low Deborah numbers, a constant normalized pressure-drop is
recognized, (2) at intermediate Deborah numbers, shear thinning provokes a reduction in pressure
drop driven by the WLM solution’s shear-thinning response, and (3) an elastic instability is observed
in the wake of the cylinder, promoted by the extensional features of the micellar solutions. As
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discussed in Sec. V A, for geometries at the microscale, the studies of Haward and coworkers [222]
recorded different instabilities with an increase in Wi, where (1) symmetric flow fields occur at
relatively small Wi, while (2) an increase in flow rate to moderate levels triggers an asymmetric flow
regime in which the fluid takes a preferential path around the cylinder, to finally (3) development of
a time-dependent flow at larger flow rates. Numerically, some features of these elastic instabilities
have been captured using the VCM model [437].

(iii) Contraction-expansion geometries. Different contraction and contraction-expansion flow
settings have been studied experimentally for planar and axisymmetric geometries with sharp and
round corners, and for hyperbolic profiles [438–441]. In a circular sharp-corner contraction flow
of tube-to-capillary aspect ratio 10.7-to-1, Hashimoto et al. [438] identified four different flow
regimes with (1) a Newtonian-like response appearing as symmetrical salient-corner vortices, (2)
a steady vortex regime, in which growth and strengthening of such vortices occurred, (3) a periodic
oscillatory flow, in which time-dependence of size and strength of the vortices was recorded, and
(4) an unstable flow, where a chaotic response was obtained; for the two last phases, a turbid
appearance of the fluid was observed. For a planar configuration of a contraction slit channel,
a detailed flow-structure study based on small angle neutron scattering (SANS), particle image
velocimetry (PIV), and birefringence visualization provided by Lutz-Bueno et al. [439] revealed a
complex interaction between micellar structure and deformation in the flow field, with development
of various vortex-formation phases that evolved depending on the solute concentration and the
solution rheological properties. More recently, Salipante et al. [440] studied the WLM flow structure
in hyperbolic contraction-expansion geometries of aspect ratio 3.7-to-1 and 8.5-to-1 and reported
an instability from steady to unsteady flow beyond critical flow rates in the form of fluctuations of
pressure drop linked to jetting flow-rate jumps that happened at similar dimensionless extension-rate
conditions across experiments, and for which the characteristic scale is given by the micelle
relaxation time. Matos et al. [441] used a microscale configuration with a planar sharp-corner and
tapered contraction-expansion settings to study the flow of typical WLM solutions under aspect
ratios of 2:1:2, 4:1:4 and 8:1:8. Their findings reveal flows that evolve from (1) symmetric steady
behavior at low flow rates, followed by (2) asymmetry about the contraction plane at intermediate
shear rates, and (3) unstable time-dependent response with further flow rate increases.

In computations, the variety of settings is also wide. For example, the work by Sasmal [442] uses
the VCM model to simulate the response of WLM solutions in expansion-contraction configuration,
perhaps representative of a porous medium. Taking the Bautista-Manero family of fluids as a
base, a series of simulation exercises by López-Aguilar and collaborators [434,443–448] proposed
modifications of a group of constitutive equations to predict the response of WLMs in different
contraction-expansion settings. Here axisymmetric rounded and sharp-cornered and hyperbolic
geometries under the benchmark 4:1 and a more stringent 10:1 aspect ratio have been studied. In line
with experimental findings, a complex kinematic evolution is recorded, with (1) a Newtonian-like
symmetric salient-corner vortex response at small flow rates that evolves into (2) coexistence of
lip-to-salient-corner vortices at intermediate flow rates, to finally reach (3) an elastic-corner vortex
phase at large flow rates, driven by a competition between viscoelasticity and thixotropy. Such
vortex phasing correlates with normal-stress fields in the recess zones and, for highly concentrated
WLM solutions, where a yield stress may be displayed by the WLMs, asymmetric yield fronts are
predicted.

(iv) Flow through cross-slot geometries. Building on earlier work [449], studies from Shen,
Haward, and colleagues [90,450] in microfluidic cross-slots display a extensionally dominated
deformation that provokes an intricate relationship between the flow field and WLM rheology,
reporting flow transitions with increases in flow rate: the first transition happens from a symmetric
stable to an asymmetric flow, with strong alignment of the micelles along the shear-free line in
the geometry; the second flow transition appears at higher flow rates and is characterized by a
3D time-dependent response. Numerical predictions using the VCM model have been put forward
recently by Kalb et al. [451,452], which capture qualitatively the main features and flow phases
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observed experimentally, such as asymmetry about the stagnation point and the formation of lip
vortices at the walls of the inlet arms.

(v) Extensional deformation under filament stretching extensional (FiSER) and capillary break-up
extensional rheometers (CaBERs). The extensional response of WLM solutions has been extensively
studied [453–459]. For example, Rothstein and coworkers recorded the evolution of the filament in
both FiSER and CaBER configurations, and found that the filament rupture appeared related to a
micellar-scission process, in contrast to the elasto-capillary thinning observed in polymer solutions
[453,454,459]. Yesilata et al. [455] studied the WLM response in shear and extensional CaBER de-
formations, for which they found a highly nonlinear response of such materials in extension—with
Trouton ratios increasing up to two orders of magnitude—and revealed relaxation times in extension
smaller than those in their shear tests; the results were confirmed recently by Omidvar et al. [458].
In subsequent work, Kim et al. [456] used a CaBER apparatus to evaluate the effect of the end-plate
diameter and concluded that this configuration is appropriate to measure the fluid’s relaxation time
and transient extensional viscosity. More recently, Sachsenheimer et al. [457] performed CaBER
experiments on typical WLM fluids and found the formation of extension-induced structures that
correlate with the linear or branched structure of the wormlike micelles. Computational modeling
by Cromer et al. [460] using the VCM model confirmed the experimental observations of the fast
rupture of the WLM filaments as being related to a scission mechanism of entangled micelles.

(vi) Fluid-structure interaction. Dey and Rothstein [461] performed experiments on flow of a
WLM solution past a cantilevered beam as a function of Weissenberg number. They reported the
development of an instability in the bending of the beam with increase of Wi, triggered by the
periodic formation of fluid jets upstream of the beam and accompanied by vortices.

(vii) Shear banding. Shear banding is an important instability observed in concentrated WLM
solutions under simple shear flow. Typically, two or more bands with different viscosity coexist for
a fixed shear rate. A second modality of such a flow-segregation phenomenon, identified as vorticity
banding, occurs when the sample is subjected to a given shear rate and arranges itself spontaneously
into bands with different stress in the vorticity direction [422,462]. Due to the growing interest on
shear banding in the 1990s, wormlike micellar flows started to be scrutinized with an increasing
degree of precision. This led to the discovery of unexpectedly large fluctuations, in particular of the
stress at an imposed shear rate within the banding plateaued regime. These fluctuations were first
interpreted as the result of an instability of the banded state due to coupling with structural variables.
Basically, the fluctuations were thought to be connected with changes in the microstructure of the
fluids.

A different, more hydrodynamic, perspective eventually emerged, interpreting the fluctuations as
the result of flow instabilities [423]. At first, the hydrodynamic perspective focused on instabilities
due to jumps in normal-stress differences (N1 or N2) at the interface between the bands [150].
The instability mechanisms due to jumps in normal stresses are analogous to the elastic version
of the Kelvin-Helmoltz instability [336]. Using a novel visualization technique, Lerouge et al.
[463] showed that the interface between the bands of a wormlike micellar solution exhibited clear
undulations, displaying different spatiotemporal dynamics. The hypothesis that these undulations
could be the result of an underlying vortex flow was first formulated by Lerouge and coworkers
[464], whilst the presence of a vortex flow in the high shear-rate band was demonstrated in [465].
The existence of a turbulent state analogous to elastic turbulence was found shortly after [466].

In theory, the vortex flow could be due to a Taylor-like bulk elastic instability of the high shear
rate (induced) band, or to a Kelvin-Helmoltz-like instability of the interface between bands. Fielding
[467] and Nicolas and Morozov [468] showed that the bulk mode dominates except for very thin
bands, where the effective curvature is too small to produce a Pakdel-McKinley-type instability. By
taking this point into consideration and realizing that the interface between bands can act as a soft
boundary, it was shown that shear-banding flows could follow three instability scenarios according
to the Pakdel-McKinley criterion, as demonstrated theoretically in [469] and experimentally in
[470]. The experimental studies cited above showed that elastic instabilities could be at play for
shear banding of semidilute solutions of wormlike micelles. Finally, it was shown that elastic
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instabilities could also be present for dilute shear-thickening solutions [471], non-shear-banding
semidilute solutions [472], and concentrated shear-banding solutions [473].

Constitutive models for wormlike micelles. There are two main streams of constitutive modeling
for WLM rheology, i.e., models based on a microstructural description of the dynamic construction-
destruction of micelles, and the other based on a evolution of a structural parameter. In the first
classification, one of the first modeling paradigms stands on the grounds of chemical-like interac-
tions between micelles put forward by Cates and coworkers [474]. Another approach based upon the
microstructural evolution is the VCM model, proposed by Vázquez et al. [151,431–433], which uses
a two-species mechanism intended to describe the rheology of concentrated solutions and success-
fully predicts key shear and extensional features of such complex fluids in steady and transient flows.
More recently, the reactive-rod model (RRM) of Graham and collaborators [475,476] was proposed
to model the rheological response of dilute WLMs based on a construction-destruction mechanism
given by suspended rigid Brownian rods that link across alignment undergoing reversible scission
and growth.

On the side of structure-parameter-based models, the Bautista-Manero-Puig (BMP) family of
fluids, whose novel BMP + _τp model variant was proposed recently [434], brings in the interaction
of the wormlike micellar network dynamics in a viscoelastic framework. The BMP + _τp model is
embodied in a generalized differential equation of the Oldroyd-B type in stress-split form that feeds
the thixotropic internal structure into the polymeric viscosity ηp via an evolution equation for a di-
mensionless fluidity f = ηp0

ηp
; here ηp0 represents the polymeric first Newtonian-plateau level. Such

a structure equation considers rates of internal-structure construction and destruction of wormlike
micelles involving viscoelasticity in such dynamics, where destruction of structure is promoted by
the energy dissipated by the solute in flow. This constitutive equation predicts a rheological response
of shear thinning, finite strain hardening, and softening, alongside a nonlinear first normal-stress
difference in shear [434], which are all common features of WLM systems [419–421].

In addition, the BMP + _τp model predicts flow segregation, such as shear banding and an ap-
parent yield stress [434,477]. Such flow-segregation features, i.e., shear banding, are imbued in the
BMP family of fluids in the form of a deformation-rate-dependent structure-destruction coefficient
that, in simple shear flow, has a nonmonotonic flow curve [477–479]. Here the shear-banding insta-
bility has been studied in ideal simple shear flow [478,479], and in complex contraction-expansion
flow [477], this being the first instance of a complex flow where shear banding has been studied.
Such efforts in modeling shear banding were followed by Germann and coworkers for flow in a tube
[480] and in complex flow for planar contraction flow [481] with WLMs characterized under the
VCM paradigm. In addition, shear banding has been modeled through different mechanisms, as in
the diffusive Johnson-Segalman model [482], with its stress-diffusion extra term, and the Giesekus
model, with its ability to trigger banding through its anisotropy parameter [483]. To motivate banded
flow regimes, the Germann-Cook-Beris (GCB) model proposes a structure breakage rate depending
explicitly on the trace of the conformation tensor [151,484], while the soft glassy rheology (SGR)
model has been proposed to model shear banding under LAOS [485,486].

In the workshop, López-Aguilar presented numerical solutions of complex flows of WLMs in an
axisymmetric contraction-expansion flow and flow past a sphere, produced with an in-house hybrid
finite-element/volume algorithm ([434] and references therein). Particular attention was paid to the
flow structure and its correlation with the rheological properties of WLMs characterized by the
BMP + _τp model [434]. In an axisymmetric abrupt 10:1 contraction-expansion setting, distinct
flow transitions are observed for WLMs (studying extension-hardening and solute-concentration
variations [434]). Strong correlation is recorded between vortex evolution and the normal-stress
distribution in the recess zones. Here, for solutions with solvent fraction β � 1/9 and high flow
rates, strain-hardening WLM flow structures evolve to have upstream elastic-corner vortex phases,
which is a step before there is strong time dependence of the numerical solutions with further
increase of the flow rate (see [487] and references therein). In contrast, for dilute solutions, upstream
lip vortices are captured at intermediate deformation rates.
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FIG. 26. Dimensionless fluidity and first normal-stress difference N1 in flow past a sphere (sphere-to-tube
aspect ratio 1:2) of a WLM solution; solvent fraction β = 5 × 10−3 and moderate hardening features, Wi = 10;
see López-Aguilar et al. [434] for further details of the rheology used.

For flow past a sphere, the BMP + _τp dimensionless fluidity f is used to analyze the internal
structural changes that are suffered by extremely concentrated WLMs in the wake of a sphere. In
the 3D plots of Fig. 26, for β = 5 × 10−3, moderate hardening features and Wi = 10, coinciding
maxima are captured in N1 and f , and are located on the symmetry line downstream of the
sphere. In the companion 2D representation, a highly unstructured fluid (red fringe level of high
f values) is recorded on the sphere wall, reflecting a shear-thinned material with relatively small
N1 values. Such a red fringe of fluid connects to the centerline downstream of the sphere, where
extensional deformation prevails and the fluid develops a N1-hardening peak. This N1 peak coincides
in location with a fluidity maximum, which, under extensional deformation and the BMP + _τp

formalism, reflects an evolution in the increase of Wi that follows the strain hardening/softening of
extensional viscosity [434]. Such a complex interplay between the change in a localized material
property and mixed deformations may take a role in further understanding the instabilities observed
experimentally when a sphere settles in WLMs [206,207,209,419,424–429] and polymer solutions
[488].

C. Liquid crystals

Author: I. Bischofberger

Nematic liquid crystals are a class of fluids with intrinsic orientational order. In equilibrium,
nematics tend to uniformly align their anisotropic constituents as a means to minimize energy, which
annihilates topological defects. When driven away from equilibrium by an externally applied flow,
the continual injection of energy can destabilize the defect-free alignment. The primary control
parameter for the effect of shear on the orientation of the director field is the Ericksen number
Er = ηγ̇ L2

K , which denotes the ratio between the viscous torques and the elastic ones. Here η is
the dynamic viscosity, γ̇ the shear rate, L the typical scale of deformation (often the thickness
of the liquid crystal layer), and K the Frank elastic constant. The condition Er ≈ 1 is typically
reached for corresponding Reynolds numbers of order 10−6; thus, hydrodynamic instabilities in the
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usual inertially driven sense are not expected to take place in nematic liquid crystals. However,
the emergence of shear-induced structures has attracted significant attention in studies of nematic
thermotropic liquid crystals and liquid crystal polymers [8,489–492], and was therefore a topic of
discussion at the workshop.

Most nematic thermotropic liquid crystals are shear-aligned nematics, in which the director
evolves towards an equilibrium polar angle. The shear-alignment in the bulk flow leads to an
irreconcilable alignment of the directors with those in the surface-anchored region. The high elastic
stresses of the director gradient at the boundary between the two regions are released through the
formation of defects beyond a critical Ericksen number. Liquid crystal polymers, by contrast, are
typically tumbling nematics characterized by a nonzero viscous torque for any orientation of the
director. Their tumbling characteristics facilitate the nucleation of singular topological defects.
Recently, topological structures and their dynamics have been described in 3D active nematics,
where disclination loops undergoing complex dynamics and recombination events are identified as
the primary unstable structure [493].

The flow behavior of lyotropic chromonic liquid crystals has so far remained largely unstudied.
Lyotropic chromonic liquid crystals (LCLCs) are aqueous dispersions of organic, disklike molecules
that self-assemble into cylindrical aggregates, which form nematic and columnar phases beyond a
certain concentration [494]. Due to their biocompatibility, they have opened paths for controlling
assembly and dynamics of biological systems when used as a replacement for isotropic fluids in
microfluidic devices [495,496]. At rest, LCLCs exhibit unique properties distinct from those of
thermotropic liquid crystals and liquid crystal polymers. In particular, LCLCs have significant
elastic anisotropy and their twist elastic constant, K2, is much smaller than the bend and splay
elastic constants, K1 and K3 [497]. The resulting relative ease with which twist deformations occur
can lead to a spontaneous symmetry breaking and the emergence of chiral structures in static LCLCs
under spatial confinement, despite the achiral nature of the molecules [498,499].

A recent study by Baza et al. has revealed a variety of complex textures that emerge in Couette
flow in the nematic LCLC disodium cromoglycate (DSCG) [500]. The liquid crystal tends to
tumble, which leads to a high sensitivity to shear rate; with increasing shear rate the materials
transitions from a log-rolling state, where the director realigns perpendicular to the flow direction,
to polydomain textures and finally to periodic stripes in which the director is predominantly along
the flow direction.

For pressure-driven flow of nematic DSCG, during the workshop Bischofberger discussed the
emergence of pure-twist disclination loops for a certain range of shear rates, which form as a
consequence of the smallness of the twist elastic constant K2. Their characteristic size is governed
by the balance between the nucleation force and the annihilation force acting on the loop [501].
Remarkably, chiral domains spontaneously form at lower shear rates, suggesting that not only
topological confinement, but also weak shear can induce chiral structuring in achiral materials.
These observations hint towards the wealth of phenomena that are still awaiting to be discovered in
flows of lyotropic chromonic liquid crystals.

IX. OUTLOOK AND OPEN QUESTIONS

With contributions from all authors

A reader who has even read only one or two sections of this wide-ranging perspective will note
that, in spite of substantial progress in the field over the past 30 years, including advances in ex-
perimental measurements, theory, and detailed numerical simulations by computational rheologists,
where each brings their own insights, there remain important areas where the integration of ideas
is needed and new discoveries remain to be made. This is true for the flow transition that occurs
in channel and pipe flows of polymeric fluids (Sec. IV, Sec. VI) and wormlike micelle solutions
(Sec. VIII). It is also the case for more complex configurations, such as the cross-slot geometry
[52,53,90,226]), where shear-thinning apparently triggers flow asymmetries so that the initial onset
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of instability gives rise to regions in the flow field with disparate shear rates. Similar issues are at
the heart of unstable flows at the pore scale for a wide range of heterogeneous and porous media;
recent experimental developments seeking to provide in situ access to these flows are mentioned
in Sec. V. Not surprisingly, observations of other microstructurally complex fluids Sec. VIII, such
as lyotropic chromonic liquid crystals, or free-surface flows of complex fluids that are impacted by
surface tension Sec. VII, hint at a wealth of discoveries that are yet to be made.

Models of viscoelastic flows. Throughout the workshop there was discussion surrounding the
fact that elastic instabilities are typically discovered at “high Weissenberg number” in polymer
solutions—where the veracity of constitutive equations at the requisite shear rates always comes into
serious question. Indeed, when modeling highly elastic viscoelastic flows, the Oldroyd-B model is
almost never quantitative at high Weissenberg number either in shear flows or in extensional flows of
polymer solutions. This can also be said of nonlinear extensions of this model, including the FENE
models as well as the Giesekus and PTT (see Sec. III). In particular, detailed molecular studies
have demonstrated that internal degrees of freedom cannot be neglected in these flows if one wants
to accurately capture the extra polymer stress. Thus, progress in understanding elastic instabilities
must almost, by the definition of the phenomena, be made hand in hand with advancements in the
rheological modeling of elastic fluids.

Spectral properties of elastic turbulence. There was also significant discussion surrounding the
fact that the eigenspectrum of elastic 2D Taylor-Couette flow was essentially unstudied. Many of
the attendees thought that such a study deserved attention in an effort to further understand the work
described in Sec. IV, especially since the beginnings of instability at values of Wi ∼10, albeit at
large gap ratio, had been found.

Importance of a Lagrangian perspective. Remarkably, shear plays an important role in all detailed
mechanisms worked out for purely elastic instabilities so far. This is despite the fact that purely
elongational flows can have a dramatic effect on single molecules, with a strong dependence on
individual histories, as exemplified by the coil-stretch transition of a single polymer, which can be
sharp and hysteretic. Moreover, typically a dependence on the history does not play any role in the
currently understood instability mechanisms, as most of the flows considered have been viscometric,
e.g., the flows have been such that each infinitesimal fluid element sees effectively a steady shear;
the extensional necking described in Sec. VII B is an example of other possibilities that exist.

Consequently, the history of the flow and stress experienced by a fluid element should enter
considerations for flows that are Lagrangian unsteady; see, e.g., Ref. [503] for a description of
3D particle tracking experiments exploring elastic turbulence from such a Lagrangian perspective.
In particular, even the notion of extension- or shear-dominated flow may depend on Lagrangian
properties such as the residence time of fluid elements. Beyond classification, it would be interesting
to see if new, purely Lagrangian, instability mechanisms could be found, e.g., using insights from
bead-spring models to inform the expected stresses and the coupling to the base flow. A Lagrangian
perspective might be useful also at the next level of complexity, when conceptually the flow is made
up of many coupled flow units; e.g., see Sec. V on flows in different porous systems. Indeed, stress
correlations over the path of a fluid element can play a nontrivial role in coupling the flow units and
determining the overall stability of the flow, which largely remain to be understood.

Another perspective on elastic waves. Because the topic of elastic waves was actively discussed
at the workshop, here we include another perspective put forward by V. Steinberg. Three main
features characterize the elastic waves observed by Varshney and Steinberg [83], as described by
the group of Steinberg: (i) the waves are transverse and manifest as a peak in the power spectrum of
spanwise velocity fluctuations; (ii) the velocity of wave propagation depends on (Wi − Wic)β with
β = 0.73; (iii) the measured wave dispersion relation is linear [200]. Given these three features, and
given the apparent agreement with the predictions of [502], the authors propose that such waves
are indeed elastic waves. Moreover, they note that they observed these waves exclusively in random
flows: either in chaotic flows above the nonnormal mode bifurcation and further in ET in a straight
channel with and without strong perturbations [198,200,201] or only above the transition to ET in
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a flow past an obstacle or between two obstacles hindering a channel flow [83,504]. In addition, the
elastic waves were not found in flow geometries with curvilinear streamlines including ET.

Because of these apparent similarities as the elastic waves predicted in [502], the authors use
the expression for the wave velocity c2

el = τ/ρ to estimate an elastic stress, τ , which depends on
the flow, in the direction of wave propagation. In the experiments of [83], cel varied from 2 to
17 mm/s, yielding an estimate for τ ranging from ∼5 × 10−3 to 0.375 Pa, and a corresponding
viscoelastic Mach number MaV = V/cel of the order 0.3 < 1. In a later paper [198], the Steinberg
group reported reaching cel ≈ 45 mm/s corresponding to τ ≈ 10 Pa, whereas in [200], much
smaller wave velocities close to the onset were measured from 0.05 to 0.2 mm/s corresponding to τ

between 3 × 10−6 and 5 × 10−5 Pa. Thus, summarizing these experiments, the range of the elastic
stress derived from cel is ∼3 × 10−6 up to 10 Pa—considerably smaller than the values noted in
Sec. II C, where the shear wave speed is tied to a flow-independent material property. Clarifying the
underlying physics will be an important direction for future research.

Open questions regarding EIT. Substantial progress has been made, both experimentally and
computationally, in understanding the nature of the turbulent drag reduction phenomenon, and
more broadly in nonlinear viscoelastic dynamics in straight pipes and channels. The mechanism
by which viscoelasticity suppresses near-wall coherent structure are understood, and the discovery
of elastoinertial turbulence helps explain why flows remain turbulent even when the Newtonian
near-wall structures are strongly suppressed. Many questions about EIT remain, however. In channel
flow, it is directly connected to the Tollmien-Schlichting instability mode and corresponding near-
wall critical layer, and is known to subcritically excite this mode, driving flow away from the laminar
state even when that state is linearly stable. A simple mechanistic explanation of this viscoelastic
excitation of the TS mode does not yet exist. Simulations reveal similar near-wall critical layer
fluctuations in plane Couette and pipe flows, even though they do not display a linear instability of
Tollmien-Schlichting type—perhaps, in analogy to channel flow, wall modes are highly susceptible
to amplification, driving bypass transition.

Additionally, a new mode of linear instability, with a critical layer near the centerline, arises in
both pipe and channel flows. This mode also appears to be strongly subcritical, leading to flows
with substantial polymer stretch fluctuations near the centerline. This may be the dominant mode at
low Reynolds numbers and high Weissenberg numbers, helping explain experimental observations
in this regime.

In addition, the maximum drag reduction asymptote may be a marginal flow regime in which
Newtonian and elastoinertial flow structures coexist, perhaps in an intermittent fashion. These issues
are ripe for future study.

Controlling and using flow instabilities. Finally, an interesting research direction for the future
will be to connect this emerging understanding of the physics underlying elastic instabilities
and turbulence to applications of viscoelastic fluids. For example, one of the most fundamental
descriptors of such flows in applications is the relationship between the overall pressure drop and the
volumetric flow rate, often described using an “apparent viscosity” ηapp that quantifies macroscopic
flow resistance; however, prediction and control of this quantity remains challenging, despite its
central importance in applications. Recent work has made progress in doing so for flows in porous
media [262], and further research along these lines will be important in the rational application of
viscoelastic flows in diverse settings.

Another important direction for future work will be in exploring ways to control elastic insta-
bilities and turbulence as well as engineer spatiotemporal flow patterns in viscoelastic fluids. So
far, mostly geometric control has been employed such as the flow between two cylinders [214],
in a cross-slot geometry [160], in disordered obstacle arrays [161], or in designed porous media
[65,262]. An attractive alternative is to employ time-dependent or modulated shear rates for active
open-loop control of viscoelastic fluid flow. As demonstrated in Ref. [162], this allows tuning or
control of the occurrence of elastic turbulence and therefore, for example, the mixing of complex
fluids. Exploring this and other approaches (e.g., employing deformable structures [461]) will be a
useful direction for future work.
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In terms of direct applications of elastic turbulence, a number of different research groups have
shown that, in addition to enhancing passive scalar mixing as was originally demonstrated in the
earlier works of Steinberg and collaborators [49,96,505,506], these kinds of viscoelastic chaotic
flows can also be used to effectively enhance heat transfer at low Reynolds numbers both in
macroscale “von Kármán flow” [507] and also at the microscale in serpentine and wavy channel
geometries [508–510]. Finally, elastic turbulence has been used to create emulsions from immiscible
viscous liquids in a simple shear mixing device [511]. In the absence of elasticity, but at identical
viscosity ratio, Reynolds and capillary numbers, no mixing was observed and the immiscible liquids
remain separated. Elastic turbulence thus offers a unique pathway to create dispersions in viscous
liquids at low Reynolds numbers in nominally shear-dominated flows. Further studies of these
phenomena, and other potential applications, would be a fruitful avenue for additional research.

In conclusion. Any reader that has gotten this far will hopefully agree that the subject is
fascinating, both from the standpoint of fundamentals, but also because the materials that make
up the complex fluids field find a wide range of applications. Thus, we hope this article serves
future researchers as a basis for next steps in advancing research and understanding of the flows and
instabilities of complex fluids.
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