Dynamics of Reversible Networks

14 August 2017

Macromolecules 1991, 24, 4701–4707

Dynamics of Reversible Networks

Ludwik Leibler,*† Michael Rubinstein,*‡ and Ralph H. Colby*‡

Groupe de Physico-Chimie Theorique, ESPCI, 10 rue Vauquelin, 75231 Paris Cedex 05, France, and Corporate Research Laboratories, Eastman Kodak Company, Rochester, New York 14650-2110

Received December 4, 1990
Recap of Simple Reptation Theory

Entangled polymer melt
Chains are all over the place in each others pervaded volume
Strands cannot tell which chain they belong to – excluded volume interactions are screened and ideal chain statistics are obeyed

Focus on one chain

Topological constraints due to other chains can be modeled as a **confining tube**.
Confining tube diameter = a

Strand with fluctuations of the order of a is an **entanglement strand**

$$a = b \sqrt{N_e}$$

Tube length $$L = \frac{N}{N_e} a$$

Chain diffuses along tube by Rouse motion

$$D_c = \frac{kT}{N \zeta}$$

Reptation time $$T_d^0 = \frac{L^2}{D_c}$$
Each polymer chain has \(N \) monomers.

There are also \(S \) stickers per chain. Stickers – potential sites for a reversible cross-link with other stickers

Microscopic parameters of a sticker

1. Fraction of stickers that are closed \(p \)
2. Lifetime of the closed state \(\tau \)

Assume **thermal equilibrium**.
Open and closed stickers must obey detailed balance.

Fraction of open stickers = \((1 - p) \)

Lifetime of open stickers = \(\tau_1 \)

Rate of change of concentration of closed stickers

\[
\frac{d}{dt} (cSp) = cS \left[\frac{1 - p}{\tau_1} - \frac{p}{\tau} \right] = 0 \Rightarrow \tau_1 = \frac{(1 - p)\tau}{p}
\]
Short time-scales \(t < \tau \)

Average length of strand between stickers

\[
N_s = \frac{N}{S + 1}
\]

For times shorter than \(\tau \) the gel behaves like a permanent network.

The chain cannot reptate along its tube because stored loops cannot traverse the closed stickers \(c, i \) and \(d \).

Segments \(ci \) and \(id \) simply undergo Rouse motion between fixed ends.
Sticker i opens \(t > \tau \)

The whole strand cd with \(2N_s \) monomers can now undergo Rouse motion. Sticker i can now diffuse along the tube.

For \(t < \tau_R (2N_s) \)

Sticker i is “unaware” of the cross-links at c and d.

Curvilinear displacement along tube

\[
l^2(t) = b^2 N_e \left(\frac{t}{\tau_e} \right)^{1/2} \]

Subdiffusive Rouse motion of entanglement strand

For \(t > \tau_R (2N_s) \)

Sticker i becomes “aware” of the constraints. The displacement freezes at that point.

\[
l^2(t) = l^2 \left[\tau_R (2N_s) \right] = b^2 (2N_s)
\]

\[
\tau_R (2N_s) = \tau_e \left(\frac{2N_s}{N_e} \right)^2
\]
Sticker f forms \(t \sim \tau_1 \)

Formation of new crosslink f freezes the displacement until that point.

The new cross-link can form either before or after \(\tau_R(2N_s) \)

\[
\tau_R(2N_s) = \tau_e \left(\frac{2N_s}{N_e} \right)^2
\]

\(\ell^2(t) \)

Dynamics of Reversible Networks
Ludwik Leibler, Michael Rubinstein and Ralph H. Colby
Sticker f forms \(t \sim \tau_1 \)

Formation of new crosslink f freezes the displacement until that point.

Strands cf and fd now relax over a time \(\tau_R \left(N_s \right) \) provided c and d remain closed.

After relaxation, the center of mass of the strand cd has moved by

\[
\Delta_{cd} = \frac{l(\tau_1)}{2}
\]

The center of mass of the whole chain has been displaced by

\[
\Delta_1 = \frac{l(\tau_1)}{2} \frac{2}{S+1} = \frac{l(\tau_1)}{S+1}
\]

Subscript 1 denotes one open sticker

Thus the chain has undergone an effective displacement along the tube although it cannot reptate as a whole in the normal fashion – this is sticky reptation.
The General Case – The k-step

A **k-strand** “dies” when one of its k open stickers close.

$$\tau_k = \frac{\tau_1}{k}$$

Longer strands live for shorter durations but have larger Rouse times.

Mean square curvilinear displacement is therefore

$$l_k^2 = \begin{cases}
b^2 (k + 1) N_s & \tau_k > \tau_R \\
b^2 N_e \left(\frac{\tau_k}{\tau_e} \right)^{1/2} & \tau_k < \tau_R \end{cases}$$

At what k does a strand live long enough to just relax fully?

$$\frac{\tau_1}{k_{\text{max}}} = \tau_R \left[(k_{\text{max}} + 1) N_s \right]$$

$$\tau_k > \tau_R$$ is equivalent to $$k < k_{\text{max}}$$

Longer strands than k(max) die partly relaxed.
Shorter strands than k(max) die fully relaxed.

A **k-strand** has k adjacent open stickers between two closed stickers.
The General Case – The k-step

Finding the effective displacement of the whole chain

\[
\Delta_k = \frac{1}{2} l_k \begin{cases}
\frac{k + 1}{S + 1} & \tau_k > \tau_R \text{ or } k < k_{\text{max}} \\
\frac{k_{\text{max}} + 1}{S + 1} & \tau_k < \tau_R \text{ or } k > k_{\text{max}}
\end{cases}
\]

½ because ends are fixed.

Probability of finding a series of k open stickers with 2 closed ends

\[
p_k = (S - k - 1) p^2 (1 - p)^k
\]

Choose a block of (k + 2) positions

Frequency of a k-step

\[
\nu_k = \frac{p_k}{\tau_k}
\]
Sum over all possible k’s

Total curvilinear displacement of the chain over a time T

$$\Delta^2 = \sum_{k=1}^{S-2} v_k \Delta_k^2 T + E + F$$

End strands

Suppose the x-th sticker closed from the end. This creates *one fixed side* and *one free side*.

Instead of the $\frac{1}{2} l_k$ before, we would have:

$$l_k x + \frac{1}{2} l_k (k + 1 - x) = \frac{x + k + 1}{2(k + 1)} l_k$$

Averaging

$$\frac{1}{k} \sum_{x=1}^{k} \frac{x + k + 1}{2(k + 1)} l_k = \frac{3}{4} l_k$$

All $1 \leq x \leq k$ are equally probable.

For **fully free chains**, we simply have $1 l_k$.
Sum over all possible k’s

Total curvilinear displacement of the chain over a time T

$$\Delta^2 = \sum_{k=1}^{S-2} \nu_k \Delta_k^2 T + \sum_{k=1}^{S-1} \nu^\text{end}_k \left(\Delta^\text{end}_k \right)^2 T + \nu_S \Delta_S^2 T$$

Further computations are similar to simple reptation theory.

Compute curvilinear and 3D self diffusion coefficients:

$$D_c = \frac{\Delta^2}{T} \quad D^\text{self} = \frac{R^2}{T_d}$$

$$R^2 = Nb^2$$

$$T_d = \frac{1}{D_c} \left(\frac{a}{N/N_e} \right)^2$$

Three contributions to the self diffusion coefficient

$$D^\text{self} = \sum_{k=1}^{S-2} D_k + \sum_{k=1}^{S-1} D^\text{end}_k + D_S$$
Relative contributions of the three terms

For large p, $k < k(\text{max})$ terms dominate in the sum

$$D_{\text{self}} \approx \frac{a^2}{2\tau S^2} \left(1 - \frac{9}{p} + \frac{12}{p^2} \right)$$

What happens if $p = 1$?

- D_k terms dominate when p is large.
- D_k terms dominate when N and S are large.
Stress Relaxation

\[G(t) = \frac{\sigma(t)}{\gamma} \]

\[G(t) = cRT \left(\frac{1}{N_e} + \frac{p}{N_s} \right) \]

\[G_2 = cRT \left(\frac{1}{N_e} \right) \]

\[T_d = \frac{Nb^2}{D_{self}} \]

\[T_d = \left(\frac{N}{N_e} \right)^{1.5} \frac{2S^2\tau}{1 - \frac{9}{p} + \frac{12}{p^2}} \]

- No effect of stickers
- Stickers act like permanent cross-links
- No effect of stickers except to slow down reptation

\[\tau_0 \]

\[\frac{1}{2} \]

\[\tau_e \]

\[\tau \]

\[T_d^0 \]

\[\log G(t) \]

\[\log t \]

\[\log (\sigma(t)) \]

\[\frac{1}{2} \]
Urazole-modified polybutadiene
Urazole-modified polybutadiene

\[G' \]

\[G'' \]

\[\frac{1}{T_d} \]

\[\frac{1}{T_d^0} \]

\[\frac{1}{\tau} \]

\[M_n = 48500 \]

\[\frac{M_w}{M_n} = 1.06 \]

Unmodified PB50-0
1% modified PB50-1
2% modified PB50-2

Dynamics of Reversible Networks
Ludwik Leibler, Michael Rubinstein and Ralph H. Colby
Urazole-modified polybutadiene

Gonzalez model

All stickers must open for reptation to occur

$$T_d = \tau_e \left(\frac{N}{N_e} \right)^{3.5} \exp(Sp)$$

Sticky reptation

Parts of the chain can relax if a few consecutive stickers open

$$T_d = \left(\frac{N}{N_e} \right)^{1.5} \frac{2S^2\tau}{1 - \frac{9}{p} + \frac{12}{p^2}}$$

$$\approx \tau \left(\frac{N}{N_s} \right)^{3.5} \left(\frac{N_s}{N_e} \right)^{1.5} \frac{15p - 11}{8}$$
Urazole-modified polybutadiene

For $Sp << 1$ both models agree

$$T^G_{d} = \tau_e \left(\frac{N}{N_e} \right)^{3.5} \exp(Sp)$$

$$T^L_{d} = \frac{Nb^2}{D_s} = \tau_e \left(\frac{N}{N_e} \right)^{3.5} \frac{1}{(1 - p)^S}$$

as both expressions Taylor expand to

$$\tau_e \left(\frac{N}{N_e} \right)^{3.5} \left(1 + Sp + O(Sp)^2 \right)$$