Combined Passive and Active Microrheology Study of Protein-Layer Formation at an Air–Water Interface

Myung Han Lee,† Daniel H. Reich,† Kathleen J. Stebe,‡ and Robert L. Leheny*,†

†Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 and‡Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104

Received August 4, 2009. Revised Manuscript Received October 26, 2009
β-lactoglobulin

Figure 4. A cartoon showing the idealized elements of secondary structure, drawn following the directions of Richardson (1985).

Monaco et al., Journal of Molecular Biology, 1987
Interfacial tension

The Surface Activity of α-Lactalbumin, β-Lactoglobulin, and Bovine Serum Albumin

I. Surface Tension Measurements with Single-Component and Mixed Solutions

PRASERT SUTTIPRASIT, VIWAT KRISDHASIMA, AND JOSEPH MCGUIRE

Departments of Bioresource Engineering, Chemical Engineering, and Food Science & Technology and Center for Gene Research and Biotechnology, Oregon State University, Corvallis, Oregon 97331

Received November 14, 1991; accepted April 27, 1992

\[\Pi = \gamma_w - \gamma_{wp} \]
Interfacial rheology

Boussinesq number

\[Bo = \frac{\text{surface drag}}{\text{subphase drag}} \]

\[Bo = \frac{\eta_f \frac{V}{L_I} P_I}{\eta \frac{V}{L_S} A_S} = \frac{\eta_S}{\eta} \frac{1}{l_c} \]

<table>
<thead>
<tr>
<th>Method</th>
<th>Du Noüy Ring</th>
<th>Passive Microrheo</th>
<th>Active Microrheo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometrical parameter (l_c) (m)</td>
<td>700μm</td>
<td>1μm</td>
<td>~10μm</td>
</tr>
</tbody>
</table>

Vanderbril et al., *Rheologica Acta*, 2010
Passive Microrheology

Boussinesq number

\[Bo = \frac{\eta_f}{\eta} \frac{1}{a} \]

http://savinlab.eng.cam.ac.uk/research.html

Lee et al., Soft Matter, 2011
Overview of Microrheology (plagiarism!)

\[\approx 1\text{mm} \uparrow \]

\[\approx 50\text{mm} \]

1\(\mu\)m beads

\[< \Delta x^2 > \]

Average of N steps

Average of N-2 steps

\[\tau = \Delta \tau \quad \tau = 3\Delta \tau \]

Camera frame rate \(f = 1 / \Delta \tau \)

\[t_i - t_{i-1} = \Delta \tau \]

\[\log(<\Delta x^2>) \]

Experimental notes

- Fewer statistical points at larger lag times. Image for longer than you need data!
- Heterogeneity at scales larger than the particles can result in a spectrum of particle walks and hence the MSD may not be representative of the medium properties

Carolyn Wagner, NNF Reading Group, 2017
Enhanced viscosity

\[< \Delta r^2(\tau) > = 4D\tau \]

Mechanical heterogeneity

\[< \Delta r^2(\tau) > = K \]

Elastic

Lee et al., Langmuir, 2010
Enhanced Viscosity

\[D \sim \frac{k_B T}{\eta a} \]

Lee et al., *Langmuir*, 2010
Active Microrheology

\[\mu B \sin \phi - \xi_r \frac{d\phi}{dt} = 0 \]

\[\phi(t) = \frac{\pi}{2} - 2 \tan^{-1}[\exp(-\frac{\mu B t}{\xi_r})] \]

Enhanced viscosity

\[\theta(t) = \frac{\pi}{2} - 2 \tan^{-1} \left[\exp \left(-\frac{\mu B t}{\xi_r} \right) \right] \]

Lee et al., Langmuir, 2010
Enhanced viscosity

$\langle \Delta r^2(\tau) \rangle \geq 4D\tau$

Mechanical heterogeneity

$\langle \Delta r^2(\tau) \rangle \geq K$

Elastic

Lee et al., Langmuir, 2010
Mechanical heterogeneity

Heterogeneity size \gg Particle size

Lee et al., Langmuir, 2010
Towards elastic response

Lee et al., Langmuir, 2010
pH Influence

pH = 5.2

\[y (\mu m) \]
\[x (\mu m) \]

pH = 7.0

\[n_{app} \text{ (nPa.m.s)} \]
\[t_a (\text{minutes}) \]

Lee et al., Langmuir, 2010
Enhanced viscosity

$< \Delta r^2(\tau) >= 4D\tau$

Mechanical heterogeneity

$< \Delta r^2(\tau) >= K$

Elastic

Lee et al., Langmuir, 2010